Abstract

Aerosol jet printing (AJP) is a direct-write additive manufacturing technique used to fabricate electronics, such as sensors, capacitors, and optoelectronic devices. It has gained significant attention in being able to utilize aerodynamic principles to deposit conductive inks (such as silver nanoparticle-based inks) onto rigid and flexible substrates. The aerosol jet printing system consists of three main components to execute the printing process: (i) the pneumatic atomizer, (ii) the virtual impactor, and (iii) the deposition head. The virtual impactor (VI) lies between the pneumatic atomizer and the deposition head, accepting the accelerated flow of differently sized aerosol particles from the pneumatic atomizer while acting as an “aerodynamic separator.” With the challenges associated with efficiency as well as resulting quality of the AJP process, the virtual impactor presents a unique opportunity to gain a deeper understanding of the component itself, aerosol particle flow behavior, and how it contributes to overall printing inefficiencies, poor repeatability, and resulting print quality. Broadly, this effort enables the expedited adoption of AJP in the electronics industry and beyond large scales. The challenges mentioned are addressed in this work by conducting a computational fluid dynamics (CFD) study of the virtual impactor to visualize fluid transportation and deposition under specific conditions. The objective of this study is to observe and characterize a single-phase, compressible, turbulent flow through the virtual impactor in AJP. The virtual impactor geometry is modeled in the ANSYS FLUENT environment based on the design by Optomec. The virtual impactor is assembled using a housing, collector, jet, stem, O-rings, and a retaining nut. Subsequently, a mesh structure is generated to discretize the flow domain. In addition, material properties, boundary conditions, and the relevant governing equations (based on the Navier–Stokes equations) are utilized to, ultimately, generate an accurate steady-state solution. The fluid flow is examined with respect to mass flow rates set at boundary conditions. The aerosol particles' interactions with the inner walls of the virtual impactor are observed. Particularly, an insight into the characteristics of aerosol particles entering the virtual impactor and their transition into a smoother flow before entering the deposition head is gained. Furthermore, the analysis provides an opportunity to observe fluid flow separation based on the design of the virtual impactor, one of its main functions in the AJP process. This exposes probable causes for inaccurate print quality, flow blockages, inconsistent outputs, process instability, and other material transport inefficiencies. Overall, this research work lays the foundation for improvements in the knowledge and performance of aerosol jet printing's virtual impactor toward optimal fabrication of printed electronics.

References

1.
Secor
,
E. B.
,
2018
, “
Principles of Aerosol Jet Printing
,”
Flex. Printed Electron.
,
3
(
3
), p.
035002
.10.1088/2058-8585/aace28
2.
Deiner
,
L. J.
, and
Reitz
,
T. L.
,
2017
, “
Inkjet and Aerosol Jet Printing of Electrochemical Devices for Energy Conversion and Storage
,”
Adv. Eng. Mater.
,
19
(
7
), p.
1600878
.10.1002/adem.201600878
3.
Gamba
,
L.
,
Johnson
,
Z. T.
,
Atterberg
,
J.
,
Diaz-Arauzo
,
S.
,
Downing
,
J. R.
,
Claussen
,
J. C.
,
Hersam
,
M. C.
, and
Secor
,
E. B.
,
2023
, “
Systematic Design of a Graphene Ink Formulation for Aerosol Jet Printing
,”
ACS Appl. Mater. Interfaces
,
15
(
2
), pp.
3325
3335
.10.1021/acsami.2c18838
4.
Balani
,
S. B.
,
Ghaffar
,
S. H.
,
Chougan
,
M.
,
Pei
,
E.
, and
Şahin
,
E.
,
2021
, “
Processes and Materials Used for Direct Writing Technologies: A Review
,”
Results Eng.
,
11
, p.
100257
.10.1016/j.rineng.2021.100257
5.
Jeong
,
H.
,
Lee
,
J. H.
,
Kim
,
S.
,
Han
,
S.
,
Moon
,
H.
,
Song
,
J.-Y.
, and
Park
,
A.-Y.
,
2023
, “
Optimization of Process Parameters in Micro-Scale Pneumatic Aerosol Jet Printing for High-Yield Precise Electrodes
,”
Sci. Rep.
,
13
(
1
), p.
21297
.10.1038/s41598-023-47544-4
6.
Salary
,
R.
,
Lombardi
,
J. P.
,
Tootooni
,
M. S.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Borgesen
,
P.
, and
Poliks
,
M. D.
,
2017
, “
Computational Fluid Dynamics Modeling and Online Monitoring of Aerosol Jet Printing Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021015
.10.1115/1.4034591
7.
Salary
,
R.
,
Lombardi
,
J. P.
,
Weerawarne
,
D. L.
,
Rao
,
P.
, and
Poliks
,
M. D.
,
2021
, “
A Computational Fluid Dynamics Investigation of Pneumatic Atomization, Aerosol Transport, and Deposition in Aerosol Jet Printing Process
,”
ASME J. Micro- Nano-Manuf.
,
9
(
1
), p.
010903
.10.1115/1.4049958
8.
Wilkinson
,
N.
,
Smith
,
M.
,
Kay
,
R.
, and
Harris
,
R.
,
2019
, “
A Review of Aerosol Jet Printing—A Non-Traditional Hybrid Process for Micro-Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
105
(
11
), pp.
4599
4619
.10.1007/s00170-019-03438-2
9.
Hines
,
D.
,
Gu
,
Y.
,
Martin
,
A.
,
Li
,
P.
,
Fleischer
,
J.
,
Clough-Paez
,
A.
,
Stackhouse
,
G.
,
Dasgupta
,
A.
, and
Das
,
S.
,
2021
, “
Considerations of Aerosol-Jet Printing for the Fabrication of Printed Hybrid Electronic Circuits
,”
Addit. Manuf.
,
47
, p.
102325
.10.1016/j.addma.2021.102325
10.
Zhang
,
Y.
,
Zhu
,
T.
,
Jiao
,
J.
,
Song
,
S.
,
Wang
,
Z.
, and
Wang
,
Z.
,
2023
, “
Experimental and Numerical Investigation on the Aerosol Micro-Jet 3D Printing of Flexible Electronic Devices
,”
Materials
,
16
(
22
), p.
7099
.10.3390/ma16227099
11.
Smith
,
M.
,
Choi
,
Y. S.
,
Boughey
,
C.
, and
Kar-Narayan
,
S.
,
2017
, “
Controlling and Assessing the Quality of Aerosol Jet Printed Features for Large Area and Flexible Electronics
,”
Flexible Printed Electron.
,
2
(
1
), p.
015004
.10.1088/2058-8585/aa5af9
12.
Rurup
,
J. D.
, and
Secor
,
E. B.
,
2024
, “
A Real‐Time Process Diagnostic to Support Reliability, Control, and Fundamental Understanding in Aerosol Jet Printing
,”
Adv. Eng. Mater.
,
26
(
1
), p.
2301348
.10.1002/adem.202301348
13.
Guyll
,
B. I.
,
Petersen
,
L. D.
,
Pint
,
C. L.
, and
Secor
,
E. B.
,
2024
, “
Enhanced Resolution, Throughput, and Stability of Aerosol Jet Printing Via In Line Heating
,”
Adv. Funct. Mater.
,
34
(
28
), p.
2316426
.10.1002/adfm.202316426
14.
Karipoth
,
P.
,
Chandler
,
J. H.
,
Lee
,
J.
,
Taccola
,
S.
,
Macdonald
,
J.
,
Valdastri
,
P.
, and
Harris
,
R. A.
,
2024
, “
Aerosol Jet Printing of Strain Sensors for Soft Robotics
,”
Adv. Eng. Mater.
,
26
(
1
), p.
2301275
.10.1002/adem.202301275
15.
Smith
,
B. N.
,
Ballentine
,
P.
,
Doherty
,
J. L.
,
Wence
,
R.
,
Hobbie
,
H. A.
,
Williams
,
N. X.
, and
Franklin
,
A. D.
,
2024
, “
Aerosol Jet Printing Conductive 3D Microstructures From Graphene Without Post‐Processing
,”
Small
,
20
(
12
), p.
2305170
.10.1002/smll.202305170
16.
Meredith
,
A.
,
Beuting
,
M.
,
Trujillo
,
M.
,
Sanders
,
S.
, and
Andrews
,
J.
,
2024
, “
In-Flight Imaging of Aerosol Jet Printer Droplets to Enable Spatially Resolved Flow Rate Measurements
,”
Flexible Printed Electron.
,
9
(
1
), p.
015003
.10.1088/2058-8585/ad1dbf
17.
Chen
,
G.
,
Gu
,
Y.
,
Tsang
,
H.
,
Hines
,
D. R.
, and
Das
,
S.
,
2018
, “
The Effect of Droplet Sizes on Overspray in Aerosol‐Jet Printing
,”
Adv. Eng. Mater.
,
20
(
8
), p.
1701084
.10.1002/adem.201701084
18.
Ramesh
,
S.
,
Mahajan
,
C.
,
Gerdes
,
S.
,
Gaikwad
,
A.
,
Rao
,
P.
,
Cormier
,
D. R.
, and
Rivero
,
I. V.
,
2022
, “
Numerical and Experimental Investigation of Aerosol Jet Printing
,”
Addit. Manuf.
,
59
(A), p.
103090
.10.1016/j.addma.2022.103090
19.
Salary
,
R.
,
Lombardi
,
J. P.
,
Weerawarne
,
D. L.
,
Tootooni
,
M. S.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2020
, “
A Sparse Representation Classification Approach for Near Real-Time, Physics-Based Functional Monitoring of Aerosol Jet-Fabricated Electronics
,”
ASME J. Manuf. Sci. Eng.
,
142
(
8
), p.
081007
.10.1115/1.4047045
20.
Santaniello
,
T.
, and
Milani
,
P.
,
2020
, “
Additive Nano-Manufacturing of 3D Printed Electronics Using Supersonic Cluster Beam Deposition
,”
Front. Nanosci.
, 15, pp.
313
333
.10.1016/B978-0-08-102515-4.00012-X
21.
Mosa
,
M. A.
,
Jo
,
J. Y.
, and
Kwon
,
K.-S.
,
2023
, “
Fast On-Off Jet Control of Aerosol Jet Printing (AJP) Using Internal Rotary Valve
,”
Addit. Manuf.
,
67
, p.
103466
.10.1016/j.addma.2023.103466
22.
Kim
,
M.
, and
Lee
,
K.
,
2000
, “
Design Modification of Virtual Impactor for Enhancing Particle Concentration Performance
,”
Aerosol Sci. Technol.
,
32
(
3
), pp.
233
242
.10.1080/027868200303768
23.
Salary
,
R.
,
Lombardi
,
J. P.
,
Weerawarne
,
D. L.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2018
, “
A State-of-the-Art Review on Aerosol Jet Printing (AJP) Additive Manufacturing Process
,”
ASME
Paper No. MSEC2019-3008.10.1115/MSEC2019-3008
24.
Sareen
,
A.
,
Hill
,
C. W.
, and
Salary
,
R. R.
, “
A Computational Fluid Dynamics Model for Investigation of Material Transport Through the Virtual Impactor in Aerosol Jet Printing
,”
ASME
Paper No. IMECE2024-139667.10.1115/IMECE2024-139667
25.
Coburn
,
B.
, and
Salary
,
R. R.
, “
Computational Fluid Dynamics (CFD) Modeling of Material Transport Through Triply Periodic Minimal Surface (TPMS) Scaffolds for Bone Tissue Engineering
,”
ASME J. Biomech. Eng.
, 147(3), p.
031007
.10.1115/1.4067575
26.
Chung
,
S.-M.
,
Kim
,
Y.-M.
, and
Lee
,
C.-H.
,
2024
, “
Computational Study of the Particle Distribution in Aerosol Flow in the Aerosol Jet Printing Process
,”
Int. J. Precis. Eng. Manuf.
, 26(4), pp.
989
998
.10.1007/s12541-024-01188-0
27.
Feng
,
J. Q.
,
2023
, “
Aerosol Deposition in 90 °Circular Tube Bends With Laminar Flows: Effects of Inertial Impaction and Gravitational Settling
,”
Aerosol Sci. Eng.
,
7
(
1
), pp.
107
117
.10.1007/s41810-022-00166-1
You do not currently have access to this content.