Abstract

Inkjet printing is a promising technique for printed micro-electronics due to low cost, customizability and compatibility with large-area, flexible substrates. However, printed line shapes can suffer from bulges at the start of lines and at corner points in 2D line patterns. The printed pattern can be multiple times wider than the designed linewidth. This can severely impact manufacturing accuracy and achievable circuit density. Bulging can be difficult to prevent without changing the ink-substrate-system, the drying conditions or the circuit design, all of which can be undesirable. Here, we demonstrate a novel printing methodology that solves this issue by changing the order in which drops are placed on the substrate. The pattern is split up into segments of three drops where the central drop is printed last. This symmetric printing prevents the unwanted ink flow that causes bulging. Larger bulge-free patterns are created by successively connecting segments. Line formation in both traditional linear printing and our novel segmented and symmetric printing was analyzed to understand and optimize results. The printing of X-, T-, and L-shapes is considerably improved compared with the traditional linear printing methodology.

References

References
1.
Arias
,
A. C.
,
MacKenzie
,
J. D.
,
McCulloch
,
I.
,
Rivnay
,
J.
, and
Salleo
,
A.
,
2010
, “
Materials and Applications for Large Area Electronics: Solution-Based Approaches
,”
Chem. Rev.
,
110
(
1
), pp.
3
24
.10.1021/cr900150b
2.
Moonen
,
P. F.
,
Yakimets
,
I.
, and
Huskens
,
J.
,
2012
, “
Fabrication of Transistors on Flexible Substrates: From Mass-Printing to High-Resolution Alternative Lithography Strategies
,”
Adv. Mater.
,
24
(
41
), pp.
5526
5541
.10.1002/adma.201202949
3.
Subramanian
,
V.
,
Cen
,
J.
,
De la Fuente Vornbrock
,
A.
,
Grau
,
G.
,
Kang
,
H.
,
Kitsomboonloha
,
R.
,
Soltman
,
D.
, and
Tseng
,
H.-Y.
,
2015
, “
High-Speed Printing of Transistors: From Inks to Devices
,”
Proc. IEEE
,
103
(
4
), pp.
567
582
.10.1109/JPROC.2015.2408321
4.
Tobjörk
,
D.
, and
Österbacka
,
R.
,
2011
, “
Paper Electronics
,”
Adv. Mater.
,
23
(
17
), pp.
1935
1961
.10.1002/adma.201004692
5.
Grau
,
G.
,
Kitsomboonloha
,
R.
,
Swisher
,
S. L.
,
Kang
,
H.
, and
Subramanian
,
V.
,
2014
, “
Printed Transistors on Paper: Towards Smart Consumer Product Packaging
,”
Adv. Funct. Mater.
,
24
(
32
), pp.
5067
5074
.10.1002/adfm.201400129
6.
McKerricher
,
G.
,
Gonzalez Perez
,
J.
, and
Shamim
,
A.
,
2015
, “
Fully Inkjet Printed RF Inductors and Capacitors Using Polymer Dielectric and Silver Conductive Ink With Through Vias
,”
IEEE Trans. Electron Devices
,
62
(
3
), pp.
1002
1009
.10.1109/TED.2015.2396004
7.
Cook
,
B. S.
, and
Shamim
,
A.
,
2012
, “
Inkjet Printing of Novel Wideband and High Gain Antennas on Low-Cost Paper Substrate
,”
IEEE Trans. Antennas Propag.
,
60
(
9
), pp.
4148
4156
.10.1109/TAP.2012.2207079
8.
Sirringhaus
,
H.
,
Kawase
,
T.
,
Friend
,
R. H.
,
Shimoda
,
T.
,
Inbasekaran
,
M.
,
Wu
,
W.
, and
Woo
,
E. P.
,
2000
, “
High-Resolution Inkjet Printing of All-Polymer Transistor Circuits
,”
Science
,
290
(
5499
), pp.
2123
2126
.10.1126/science.290.5499.2123
9.
Sekitani
,
T.
,
Noguchi
,
Y.
,
Zschieschang
,
U.
,
Klauk
,
H.
, and
Someya
,
T.
,
2008
, “
Organic Transistors Manufactured Using Inkjet Technology With Subfemtoliter Accuracy
,”
Proc. Natl. Acad. Sci.
,
105
(
13
), pp.
4976
4980
.10.1073/pnas.0708340105
10.
Grau
,
G.
, and
Subramanian
,
V.
,
2016
, “
Fully High-Speed Gravure Printed, Low-Variability, High-Performance Organic Polymer Transistors With Sub-5V Operation
,”
Adv. Electron. Mater.
,
2
(
4
), p.
1500328
.10.1002/aelm.201500328
11.
Tekoglu
,
S.
,
Hernandez-Sosa
,
G.
,
Kluge
,
E.
,
Lemmer
,
U.
, and
Mechau
,
N.
,
2013
, “
Gravure Printed Flexible Small-Molecule Organic Light Emitting Diodes
,”
Org. Electron.
,
14
(
12
), pp.
3493
3499
.10.1016/j.orgel.2013.09.027
12.
Chang
,
J. B.
,
Liu
,
V.
,
Subramanian
,
V.
,
Sivula
,
K.
,
Luscombe
,
C.
,
Murphy
,
A.
,
Liu
,
J.
, and
Fréchet
,
J. M. J.
,
2006
, “
Printable Polythiophene Gas Sensor Array for Low-Cost Electronic Noses
,”
J. Appl. Phys.
,
100
(
1
), p.
014506
.10.1063/1.2208743
13.
Someya
,
T.
,
Kato
,
Y.
,
Sekitani
,
T.
,
Iba
,
S.
,
Noguchi
,
Y.
,
Murase
,
Y.
,
Kawaguchi
,
H.
, and
Sakurai
,
T.
,
2005
, “
Conformable, Flexible, Large-Area Networks of Pressure and Thermal Sensors With Organic Transistor Active Matrixes
,”
Proc. Natl. Acad. Sci. U. S. A.
,
102
(
35
), pp.
12321
12325
.10.1073/pnas.0502392102
14.
Lim
,
N.
,
Kim
,
J.
,
Lee
,
S.
,
Kim
,
N.
, and
Cho
,
G.
,
2009
, “
Screen Printed Resonant Tags for Electronic Article Surveillance Tags
,”
IEEE Trans. Adv. Packag.
,
32
(
1
), pp.
72
76
.10.1109/TADVP.2008.2006656
15.
Sekitani
,
T.
,
Nakajima
,
H.
,
Maeda
,
H.
,
Fukushima
,
T.
,
Aida
,
T.
,
Hata
,
K.
, and
Someya
,
T.
,
2009
, “
Stretchable Active-Matrix Organic Light-Emitting Diode Display Using Printable Elastic Conductors
,”
Nat. Mater.
,
8
(
6
), pp.
494
499
.10.1038/nmat2459
16.
Sekitani
,
T.
,
Takamiya
,
M.
,
Noguchi
,
Y.
,
Nakano
,
S.
,
Kato
,
Y.
,
Sakurai
,
T.
, and
Someya
,
T.
,
2007
, “
A Large-Area Wireless Power-Transmission Sheet Using Printed Organic Transistors and Plastic MEMS Switches
,”
Nat. Mater.
,
6
(
6
), pp.
413
417
.10.1038/nmat1903
17.
Hoath
,
S. D.
,
Hsiao
,
W.-K.
,
Jung
,
S.
,
Martin
,
G. D.
,
Hutchings
,
I. M.
,
Morrison
,
N. F.
, and
Harlen
,
O. G.
,
2013
, “
Drop Speeds From Drop-on-Demand Ink-Jet Print Heads
,”
J. Imaging Sci. Technol.
,
57
(
1
), pp.
1
11
.10.2352/J.ImagingSci.Technol.2013.57.1.010503
18.
Nallan
,
H. C.
,
Sadie
,
J. A.
,
Kitsomboonloha
,
R.
,
Volkman
,
S. K.
, and
Subramanian
,
V.
,
2014
, “
Systematic Design of Jettable Nanoparticle-Based Inkjet Inks: Rheology, Acoustics, and Jettability
,”
Langmuir
,
30
(
44
), pp.
13470
13477
.10.1021/la502903y
19.
Liu
,
Y.-F.
,
Tsai
,
M.-H.
,
Pai
,
Y.-F.
, and
Hwang
,
W.-S.
,
2013
, “
Control of Droplet Formation by Operating Waveform for Inks With Various Viscosities in Piezoelectric Inkjet Printing
,”
Appl. Phys. A
,
111
(
2
), pp.
509
516
.10.1007/s00339-013-7569-7
20.
Liu
,
Y.
, and
Derby
,
B.
,
2019
, “
Experimental Study of the Parameters for Stable Drop-on-Demand Inkjet Performance
,”
Phys. Fluids
,
31
(
3
), p.
032004
.10.1063/1.5085868
21.
Lai
,
J.-M.
,
Huang
,
C.-Y.
,
Chen
,
C.-H.
,
Linliu
,
K.
, and
Lin
,
J.-D.
,
2010
, “
Influence of Liquid Hydrophobicity and Nozzle Passage Curvature on Microfluidic Dynamics in a Drop Ejection Process
,”
J. Micromech. Microeng.
,
20
(
1
), p.
015033
.10.1088/0960-1317/20/1/015033
22.
Reis
,
N.
,
Ainsley
,
C.
, and
Derby
,
B.
,
2005
, “
Ink-Jet Delivery of Particle Suspensions by Piezoelectric Droplet Ejectors
,”
J. Appl. Phys.
,
97
(
9
), p.
094903
.10.1063/1.1888026
23.
Yang
,
Q.
,
Li
,
H.
,
Li
,
M.
,
Li
,
Y.
,
Chen
,
S.
,
Bao
,
B.
, and
Song
,
Y.
,
2017
, “
Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing
,”
ACS Appl. Mater. Interfaces
,
9
(
47
), pp.
41521
41528
.10.1021/acsami.7b11356
24.
Wu
,
H.-C.
,
Shan
,
T.-R.
,
Hwang
,
W.-S.
, and
Lin
,
H.-J.
,
2004
, “
Study of Micro-Droplet Behavior for a Piezoelectric Inkjet Printing Device Using a Single Pulse Voltage Pattern
,”
Mater. Trans.
,
45
(
5
), pp.
1794
1801
.10.2320/matertrans.45.1794
25.
He
,
B.
,
Yang
,
S.
,
Qin
,
Z.
,
Wen
,
B.
, and
Zhang
,
C.
,
2017
, “
The Roles of Wettability and Surface Tension in Droplet Formation During Inkjet Printing
,”
Sci. Rep.
,
7
(
1
), p.
11841
.10.1038/s41598-017-12189-7
26.
Duineveld
,
P. C.
,
2003
, “
The Stability of Ink-Jet Printed Lines of Liquid With Zero Receding Contact Angle on a Homogeneous Substrate
,”
J. Fluid Mech.
,
477
, pp.
175
200
.10.1017/S0022112002003117
27.
Stringer
,
J.
, and
Derby
,
B.
,
2009
, “
Limits to Feature Size and Resolution in Ink Jet Printing
,”
J. Eur. Ceram. Soc.
,
29
(
5
), pp.
913
918
.10.1016/j.jeurceramsoc.2008.07.016
28.
Soltman
,
D.
, and
Subramanian
,
V.
,
2008
, “
Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect
,”
Langmuir
,
24
(
5
), pp.
2224
2231
.10.1021/la7026847
29.
Stringer
,
J.
, and
Derby
,
B.
,
2010
, “
Formation and Stability of Lines Produced by Inkjet Printing
,”
Langmuir
,
26
(
12
), pp.
10365
10372
.10.1021/la101296e
30.
Oh
,
Y.
,
Kim
,
J.
,
Yoon
,
Y. J.
,
Kim
,
H.
,
Yoon
,
H. G.
,
Lee
,
S.-N.
, and
Kim
,
J.
,
2011
, “
Inkjet Printing of Al2O3 Dots, Lines, and Films: From Uniform Dots to Uniform Films
,”
Curr. Appl. Phys.
,
11
(
3
), pp.
S359
S363
.10.1016/j.cap.2010.11.065
31.
Hsiao
,
W.-K.
,
Martin
,
G. D.
, and
Hutchings
,
I. M.
,
2014
, “
Printing Stable Liquid Tracks on a Surface With Finite Receding Contact Angle
,”
Langmuir
,
30
(
41
), pp.
12447
12455
.10.1021/la502490p
32.
Du
,
Z.
,
Xing
,
R.
,
Cao
,
X.
,
Yu
,
X.
, and
Han
,
Y.
,
2017
, “
Symmetric and Uniform Coalescence of Ink-Jetting Printed Polyfluorene Ink Drops by Controlling the Droplet Spacing Distance and Ink Surface Tension/Viscosity Ratio
,”
Polymers
,
115
, pp.
45
51
.10.1016/j.polymer.2017.03.023
33.
Soltman
,
D.
,
Smith
,
B.
,
Kang
,
H.
,
Morris
,
S. J. S.
, and
Subramanian
,
V.
,
2010
, “
Methodology for Inkjet Printing of Partially Wetting Films
,”
Langmuir
,
26
(
19
), pp.
15686
15693
.10.1021/la102053j
34.
Kang
,
H.
,
Soltman
,
D.
, and
Subramanian
,
V.
,
2010
, “
Hydrostatic Optimization of Inkjet-Printed Films
,”
Langmuir
,
26
(
13
), pp.
11568
11573
.10.1021/la100822s
35.
Soltman
,
D.
,
Smith
,
B.
,
Morris
,
S. J. S.
, and
Subramanian
,
V.
,
2013
, “
Inkjet Printing of Precisely Defined Features Using Contact-Angle Hysteresis
,”
J. Colloid Interface Sci.
,
400
, pp.
135
139
.10.1016/j.jcis.2013.03.006
36.
Diaz
,
E.
,
Ramon
,
E.
, and
Carrabina
,
J.
,
2013
, “
Inkjet Patterning of Multiline Intersections for Wirings in Printed Electronics
,”
Langmuir
,
29
(
40
), pp.
12608
12614
.10.1021/la402101d
37.
Vila
,
F.
,
Pallares
,
J.
,
Ramon
,
E.
, and
Teres
,
L.
,
2016
, “
A Systematic Study of Pattern Compensation Methods for All-Inkjet Printing Processes
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
6
(
4
), pp.
630
636
.10.1109/TCPMT.2015.2510821
38.
Chen
,
C.-T.
, and
Hung
,
T.-Y.
,
2016
, “
Morphology and Deposit of Picoliter Droplet Tracks Generated by Inkjet Printing
,”
J. Micromech. Microeng.
,
26
(
11
), p.
115005
.10.1088/0960-1317/26/11/115005
39.
Jagannathan
,
L.
,
2012
, “
Organic and Printed Electronics for Biological Microfluidic Applications
,”
Ph.D. dissertation
,
University of California
, Berkeley, CA.https://escholarship.org/uc/item/3fb7z10g
40.
de la Fuente Vornbrock
,
A.
,
Sung
,
D.
,
Kang
,
H.
,
Kitsomboonloha
,
R.
, and
Subramanian
,
V.
,
2010
, “
Fully Gravure and Ink-Jet Printed High Speed PBTTT Organic Thin Film Transistors
,”
Org. Electron.
,
11
(
12
), pp.
2037
2044
.10.1016/j.orgel.2010.09.003
41.
Facchetti
,
A.
,
Yoon
,
M.-H.
, and
Marks
,
T. J.
,
2005
, “
Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics
,”
Adv. Mater.
,
17
(
14
), pp.
1705
1725
.10.1002/adma.200500517
42.
Roberts
,
M. E.
,
Queraltó
,
N.
,
Mannsfeld
,
S. C. B.
,
Reinecke
,
B. N.
,
Knoll
,
W.
, and
Bao
,
Z.
,
2009
, “
Cross-Linked Polymer Gate Dielectric Films for Low-Voltage Organic Transistors
,”
Chem. Mater.
,
21
(
11
), pp.
2292
2299
.10.1021/cm900637p
43.
Tseng
,
H.-Y.
, and
Subramanian
,
V.
,
2011
, “
All Inkjet-Printed, Fully Self-Aligned Transistors for Low-Cost Circuit Applications
,”
Org. Electron.
,
12
(
2
), pp.
249
256
.10.1016/j.orgel.2010.11.013
44.
Kim
,
S. J.
,
Jang
,
M.
,
Yang
,
H. Y.
,
Cho
,
J.
,
Lim
,
H. S.
,
Yang
,
H.
, and
Lim
,
J. A.
,
2017
, “
Instantaneous Pulsed-Light Cross-Linking of a Polymer Gate Dielectric for Flexible Organic Thin-Film Transistors
,”
ACS Appl. Mater. Interfaces
,
9
(
13
), pp.
11721
11731
.10.1021/acsami.6b14957
45.
Molesa
,
S. E.
,
De La
,
F.
,
Vornbrock
,
A.
,
Chang
,
P. C.
, and
Subramanian
,
V.
,
2005
, “
Low-Voltage Inkjetted Organic Transistors for Printed RFID and Display Applications
,”
IEEE Technical Digest—International Electron Devices Meeting
(
IEDM
), Washington, DC, Dec. 5, pp.
109
112
.10.1109/IEDM.2005.1609280
46.
IEC
,
2017
, “
Printed Electronics—Part 302-1: Equipment—Inkjet—Imaging Based Measurement of Jetting Speed
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No. 62899-302-1.
47.
IEC
,
2018
, “
Printed Electronics—Part 302-2: Equipment—Inkjet—Imaging-Based Measurement of Droplet Volume
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No. 62899-302-2.
48.
Dong
,
H.
,
Carr
,
W. W.
,
Bucknall
,
D. G.
, and
Morris
,
J. F.
,
2007
, “
Temporally-Resolved Inkjet Drop Impaction on Surfaces
,”
AIChE J.
,
53
(
10
), pp.
2606
2617
.10.1002/aic.11283
You do not currently have access to this content.