Abstract

Given the recent trend toward hybrid processing involving the integration of wire arc additive manufacturing (WAAM) and machining capabilities, this paper aims to identify and correlate microstructural variations observed in wire arc additively manufactured aluminum alloy 4043 workpieces to their specific micromilling responses. This is done with the explicit goal of assessing the feasibility of using micromilling responses to detect microstructural variations in WAAM workpieces. As part of this effort, variations in the interlayer cooling time are used to induce changes in the microstructure of a thin-wall WAAM workpiece. The microstructures are first characterized using in-process thermographic imaging, optical microscopy, polarized light microscopy, and indentation. Micromilling slotting experiments are then conducted on different regions within the workpiece. The findings suggest that cutting force signals are the premier candidate for in situ extraction of information regarding microstructural variations within WAAM workpieces. In particular, in situ analysis of the cutting force frequency spectrum can provide critical information regarding dominant failure mechanisms related to the underlying microstructure. Other key micromilling responses such as surface roughness, burr formation, and tool wear also correlate well with the underlying microstructural variations. While these early stage findings hold promise, future research efforts spanning multiple metal alloys systems and micromachining processes are needed to mature the proposed concept.

References

References
1.
Cunningham
,
C. R.
,
Flynn
,
J. M.
,
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2018
, “
Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing
,”
Addit. Manuf.
,
22
, pp.
672
686
.10.1016/j.addma.2018.06.020
2.
Wu
,
B.
,
Pan
,
Z.
,
Ding
,
D.
,
Cuiuri
,
D.
,
Li
,
H.
,
Xu
,
J.
, and
Norrish
,
J.
,
2018
, “
A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement
,”
J. Manuf. Process
,
35
, pp.
127
139
.10.1016/j.jmapro.2018.08.001
3.
Derekar
,
K. S.
,
2018
, “
A Review of Wire Arc Additive Manufacturing and Advances in Wire Arc Additive Manufacturing of Aluminium
,”
Mater. Sci. Technol.
,
34
(
8
), pp.
895
916
.10.1080/02670836.2018.1455012
4.
Rodrigues
,
T. A.
,
Duarte
,
V.
,
Miranda
,
R. M.
,
Santos
,
T. G.
, and
Oliveira
,
J. P.
,
2019
, “
Current Status and Perspectives on Wire and Arc Additive Manufacturing (WAAM)
,”
Materials
,
12
(
7
), p.
1121
.10.3390/ma12071121
5.
Busachi
,
A.
,
Erkoyuncu
,
J.
,
Colegrove
,
P.
,
Martina
,
F.
,
Watts
,
C.
, and
Drake
,
R.
,
2017
, “
A Review of Additive Manufacturing Technology and Cost Estimation Techniques for the Defence Sector
,”
CIRP J. Manuf. Sci. Technol.
,
19
, pp.
117
128
.10.1016/j.cirpj.2017.07.001
6.
Uriondo
,
A.
,
Esperon-Miguez
,
M.
, and
Perinpanayagam
,
S.
,
2015
, “
The Present and Future of Additive Manufacturing in the Aerospace Sector: A Review of Important Aspects
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
229
(
11
), pp.
2132
2147
.10.1177/0954410014568797
7.
Müller
,
J.
,
Grabowski
,
M.
,
Müller
,
C.
,
Hensel
,
J.
,
Unglaub
,
J.
,
Thiele
,
K.
,
Kloft
,
H.
, and
Dilger
,
K.
,
2019
, “
Design and Parameter Identification of Wire and Arc Additively Manufactured (WAAM) Steel Bars for Use in Construction
,”
Metals
,
9
(
7
), p.
725
.10.3390/met9070725
8.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2015
, “
Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1–4
), pp.
465
481
.10.1007/s00170-015-7077-3
9.
Yamazaki
,
T.
,
2016
, “
Development of a Hybrid Multi-Tasking Machine Tool: Integration of Additive Manufacturing Technology With CNC Machining
,”
Procedia CIRP
,
42
, pp.
81
86
.10.1016/j.procir.2016.02.193
10.
Li
,
F.
,
Chen
,
S.
,
Shi
,
J.
,
Tian
,
H.
, and
Zhao
,
Y.
,
2017
, “
Evaluation and Optimization of a Hybrid Manufacturing Process Combining Wire Arc Additive Manufacturing With Milling for the Fabrication of Stiffened Panels
,”
Appl. Sci.
,
7
(
12
), p.
1233
.10.3390/app7121233
11.
Sealy
,
M. P.
,
Madireddy
,
G.
,
Williams
,
R. E.
,
Rao
,
P.
, and
Toursangsaraki
,
M.
,
2018
, “
Hybrid Processes in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
060801
.10.1115/1.4038644
12.
Montevecchi
,
F.
,
Grossi
,
N.
,
Takagi
,
H.
,
Scippa
,
A.
,
Sasahara
,
H.
, and
Campatelli
,
G.
,
2016
, “
Cutting Forces Analysis in Additive Manufactured AISI H13 Alloy
,”
Procedia CIRP
,
46
, pp.
476
479
.10.1016/j.procir.2016.04.034
13.
Rotella
,
G.
,
Imbrogno
,
S.
,
Candamano
,
S.
, and
Umbrello
,
D.
,
2018
, “
Surface Integrity of Machined Additively Manufactured Ti Alloys
,”
J. Mater. Process. Technol.
,
259
, pp.
180
185
.10.1016/j.jmatprotec.2018.04.030
14.
Guo
,
P.
,
Zou
,
B.
,
Huang
,
C.
, and
Gao
,
H.
,
2017
, “
Study on Microstructure, Mechanical Properties and Machinability of Efficiently Additive Manufactured AISI 316 L Stainless Steel by High-Power Direct Laser Deposition
,”
J. Mater. Process. Technol.
,
240
, pp.
12
22
.10.1016/j.jmatprotec.2016.09.005
15.
Venkatesh
,
V.
,
Swain
,
N.
,
Srinivas
,
G.
,
Kumar
,
P.
, and
Barshilia
,
H. C.
,
2017
, “
Review on the Machining Characteristics and Research Prospects of Conventional Microscale Machining Operations
,”
Mater. Manuf. Process
,
32
(
3
), pp.
235
262
.10.1080/10426914.2016.1151045
16.
Samuel
,
J.
,
Jun
,
M. B. G.
,
Ozdoganlar
,
B.
,
Honegger
,
A.
,
Vogler
,
M.
, and
Kapoor
,
S. G.
,
2020
, “
Micro/Meso-Sscale Mechanical Machining 2020: A Two Decade State-of-the-Field Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110809
.10.1115/1.4047621
17.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2003
, “
Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
202
209
.10.1115/1.1556402
18.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling—Part I: Surface Generation
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
685
694
.10.1115/1.1813470
19.
Vogler
,
M. P.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling—Part II: Cutting Force Prediction
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
695
705
.10.1115/1.1813471
20.
Nowak
,
J. F.
, and
Samuel
,
J.
,
2019
, “
Quantifying Machining Outputs of Pristine Human Teeth Relevant to Dental Preparation Procedures
,”
J. Mech. Behav. Biomed. Mater
,
91
, pp.
1
9
.10.1016/j.jmbbm.2018.11.008
21.
Conward
,
M.
, and
Samuel
,
J.
,
2016
, “
Machining Characteristics of the Haversian and Plexiform Components of Bovine Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
525
534
.10.1016/j.jmbbm.2016.03.017
22.
Samuel
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
K. J.
,
2006
, “
Experimental Investigation of the Machinability of Polycarbonate Reinforced With Multiwalled Carbon Nanotubes
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
465
473
.10.1115/1.2137753
23.
Chu
,
B.
,
Samuel
,
J.
, and
Koratkar
,
N.
,
2015
, “
Micromilling Responses of Hierarchical Graphene Composites
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011002
.10.1115/1.4028480
24.
Bonaiti
,
G.
,
Parenti
,
P.
,
Annoni
,
M.
, and
Kapoor
,
S.
,
2017
, “
Micro-Milling Machinability of DED Additive Titanium Ti-6Al-4V
,”
Procedia Manuf.
,
10
, pp.
497
509
.10.1016/j.promfg.2017.07.104
25.
Pickin
,
C. G.
, and
Young
,
K.
,
2006
, “
Evaluation of Cold Metal Transfer (CMT) Process for Welding Aluminium Alloy
,”
Sci. Technol. Weld. Joining
,
11
(
5
), pp.
583
585
.10.1179/174329306X120886
26.
Hu
,
Z.
,
Qin
,
X.
,
Shao
,
T.
, and
Liu
,
H.
,
2018
, “
Understanding and Overcoming of Abnormity at Start and End of the Weld Bead in Additive Manufacturing With GMAW
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
2357
2368
.10.1007/s00170-017-1392-9
27.
Li
,
C.
,
Gu
,
H.
,
Wang
,
W.
,
Wang
,
S.
,
Ren
,
L.
,
Wang
,
Z.
,
Ming
,
Z.
, and
Zhai
,
Y.
,
2019
, “
Effect of Heat Input on Formability, Microstructure, and Properties of Al–7Si–0.6 Mg Alloys Deposited by CMT-WAAM Process
,”
Appl. Sci.
,
10
(
1
), p.
70
.10.3390/app10010070
28.
Wang
,
Y.
,
Yang
,
S.
,
Xie
,
C.
,
Liu
,
H.
, and
Zhang
,
Q.
,
2018
, “
Microstructure and Ratcheting Behavior of Additive Manufactured 4043 Aluminum Alloy
,”
J. Mater. Eng. Perform
,
27
(
9
), pp.
4582
4592
.10.1007/s11665-018-3563-8
29.
Slámová
,
M.
,
Očenášek
,
V.
, and
Vander Voort
,
G.
,
2004
, “
Polarized Light Microscopy: Utilization in the Investigation of the Recrystallization of Aluminum Alloys
,”
Mater. Charact.
,
52
(
3
), pp.
165
177
.10.1016/j.matchar.2003.10.010
30.
Abrams
,
H.
,
1971
, “
Grain Size Measurement by the Intercept Method
,”
Metallography
,
4
(
1
), pp.
59
78
.10.1016/0026-0800(71)90005-X
31.
Ghassemali
,
E.
,
Riestra
,
M.
,
Bogdanoff
,
T.
,
Kumar
,
B. S.
, and
Seifeddine
,
S.
,
2017
, “
Hall-Petch Equation in a Hypoeutectic Al-Si Cast Alloy: Grain Size versus secondary Dendrite Arm Spacing
,”
Procedia Eng.
,
207
, pp.
19
24
.10.1016/j.proeng.2017.10.731
32.
ASTM92-17
,
2017
,
Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM92-17.
33.
Rodrigues
,
T. A.
,
Duarte
,
V.
,
Avila
,
J. A.
,
Santos
,
T. G.
,
Miranda
,
R. M.
, and
Oliveira
,
J. P.
,
2019
, “
Wire and Arc Additive Manufacturing of HSLA Steel: Effect of Thermal Cycles on Microstructure and Mechanical Properties
,”
Addit. Manuf.
,
27
, pp.
440
450
.10.1016/j.addma.2019.03.029
34.
Snugovsky
,
L.
,
Major
,
J. F.
,
Perovic
,
D. D.
, and
Rutter
,
J. W.
,
2000
, “
Silicon Segregation in Aluminium Casting Alloy
,”
Mater. Sci. Technol.
,
16
(
2
), pp.
125
128
.10.1179/026708300101507604
35.
Haghshenas
,
M.
, and
Jamali
,
J.
,
2017
, “
Assessment of Circumferential Cracks in Hypereutectic Al-Si Clutch Housings, Case Stud
,”
Eng. Failure Anal.
,
8
, pp.
11
20
.10.1016/j.csefa.2016.11.003
36.
Li
,
S. S.
,
Zou
,
B.
,
Xu
,
K.
, and
Wang
,
Y.
,
2019
, “
Machined Channel Quality and Tool Life Using Cermet Micro-Mill in Micro-Milling Aluminum Alloy
,”
Int. J. Adv. Manuf. Technol.
,
101
, pp.
2205
2216
.10.1007/s00170-018-3120-5
You do not currently have access to this content.