Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-1 of 1
Keywords: printed electronics
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. September 2020, 8(3): 031001.
Paper No: JMNM-19-1024
Published Online: March 27, 2020
... electronics inkjet printing line morphology bulging scalloping metal nanoparticle ink Printed electronics is a promising new paradigm for the low-cost manufacturing of micro-electronics [ 1 – 3 ], especially, on large-area flexible substrates such as plastic and paper [ 4 , 5 ]. A range of...
Abstract
Inkjet printing is a promising technique for printed micro-electronics due to low cost, customizability and compatibility with large-area, flexible substrates. However, printed line shapes can suffer from bulges at the start of lines and at corner points in 2D line patterns. The printed pattern can be multiple times wider than the designed linewidth. This can severely impact manufacturing accuracy and achievable circuit density. Bulging can be difficult to prevent without changing the ink-substrate-system, the drying conditions or the circuit design, all of which can be undesirable. Here, we demonstrate a novel printing methodology that solves this issue by changing the order in which drops are placed on the substrate. The pattern is split up into segments of three drops where the central drop is printed last. This symmetric printing prevents the unwanted ink flow that causes bulging. Larger bulge-free patterns are created by successively connecting segments. Line formation in both traditional linear printing and our novel segmented and symmetric printing was analyzed to understand and optimize results. The printing of X-, T-, and L-shapes is considerably improved compared with the traditional linear printing methodology.