Abstract

Dual matrix transmit-receive longitudinal (TRL) arrays have been shown to provide an improved signal to noise ratio in the near field zone which makes them the most suitable array configuration for the inspection of near-surface defects. This study aims to compare the performance of different configurations for transmit-receive longitudinal matrix arrays. For this purpose, four matrix configurations of 2 × 32, 4 × 16, 4 × 32, and 8 × 16 elements are investigated using EXTENDE CIVA modeling package. The array operating frequencies investigated are either 5 MHz or 10 MHz. The effect of different natural focal depths, arrays separation distances, dynamic electronic depth focusing, and electronic beam skewing for these TRL arrays are considered in models prepared in CIVA. The inspection of a series of flat bottom holes extended up to a few millimeters under the surface using the selected TRL configurations is also investigated in the study. It is found that the performance of focusing for near-surface areas is more efficient using the 4 × 16 and 8 × 16 elements configurations as compared with the others, and the signal amplitudes of the defects located deeper in the target material are almost independent of the configuration.

References

References
1.
Lebowitz
,
C. A.
and
Brown
,
L. M.
,
1993
, “Ultrasonic Measurement of Pipe Thickness,”
Review of Progress in Quantitative Nondestructive Evaluation
,
D. O. Thompson, and D. E. Chimenti, eds., Springer
,
New York
, pp.
1987
1994
.
2.
Lozev
,
M.
,
Smith
,
R.
, and
Grimmett
,
B.
,
2005
, “
Evaluation of Methods for Detecting and Monitoring of Corrosion Damage in Risers
,”
ASME J. Pressure Vessel Technol.
,
127
(3)
, pp.
244
254
. 10.1115/1.1991877
3.
Juengert
,
A.
,
Dugan
,
S.
,
Homann
,
T.
,
Mitzscherling
,
S.
,
Prager
,
J.
,
Pudovikov
,
S.
, and
Schwender
,
T.
,
2018
, “
Advanced Ultrasonic Techniques for Nondestructive Testing of Austenitic and Dissimilar Welds in Nuclear Facilities
,”
AIP Conference Proceedings
,
Apr. 20
, Vol.
1949
, No.
1
, p.
110002
,
AIP Publishing LLC
.
4.
Nageswaran
,
C.
,
Bird
,
C.
, and
Whittle
,
A.
,
2008
, “
Immersion Transmit-Receive Longitudinal Phased Array Probe for Stainless Steel
,”
Insight-Non-Destructive Testing and Condition Monitoring
,
50
(
12
), pp.
673
678
. 10.1784/insi.2008.50.12.673
5.
Wang
,
R.
,
Liu
,
Z.
,
Wu
,
J.
,
Jiang
,
B.
, and
Li
,
B.
,
2019
, “
Research on Phased Array Ultrasonic Testing on CFETR Vacuum Vessel Welding
,”
Fusion Eng. Des.
,
139
, pp.
124
127
. 10.1016/j.fusengdes.2019.01.050
6.
Kumar
,
S.
,
Menaka
,
M.
, and
Venkatraman
,
B.
,
2019
, “
Simulation and Experimental Analysis of Austenitic Stainless Steel Weld Joints Using Ultrasonic Phased Array
,”
Meas. Sci. Technol.
,
31
(
2
), p.
024005
. 10.1088/1361-6501/ab48a3
7.
Williams
,
S. W.
,
Martina
,
F.
,
Addison
,
A. C.
,
Ding
,
J.
,
Pardal
,
G.
, and
Colegrove
,
P.
,
2016
, “
Wire+ Arc Additive Manufacturing
,”
Mater. Sci. Technol.
,
32
(
7
), pp.
641
647
. 10.1179/1743284715Y.0000000073
8.
Martina
,
F.
,
Ding
,
J.
,
Williams
,
S.
,
Caballero
,
A.
,
Pardal
,
G.
, and
Quintino
,
L.
,
2019
, “
Tandem Metal Inert Gas Process for High Productivity Wire Arc Additive Manufacturing in Stainless Steel
,”
Addit. Manuf.
,
25
, pp.
545
550
. 10.1016/j.addma.2018.11.022
9.
Mohseni
,
E.
,
Javadi
,
Y.
,
Lines
,
D.
,
Vithanage
,
R.
,
Foster
,
E.
,
Qiu
,
Z.
,
Zimermann
,
R.
,
MacLeod
,
C. N.
,
Pierce
,
S. G.
,
Gachagan
,
A.
,
Marinelli
,
G.
,
Ding
,
J.
, and
Williams
,
S.
,
2019
, “
Ultrasonic Phased Array Inspection of Wire Plus Arc Additive Manufactured (WAAM) Titanium Samples
,”
58th Annual British Conference on Non-Destructive Testing. Proceedings of CM 2019
,
Sept. 3–5
,
The BritishInstitute of NDT
,
Telford, UK
, p.
46
10.
Mahaut
,
S.
,
Darmon
,
M
,
Chatillon
,
S
,
Jenson
,
F
, and
Calmon
,
P
,
2009
, “
Recent Advances and Current Trends of Ultrasonic Modelling in CIVA
,”
Insight-Non-Destructive Testing and Condition Monitoring
,
51
(
2
), pp.
78
81
. 10.1784/insi.2009.51.2.78
11.
Chaffaï-Gargouri
,
S.
,
Chatillon
,
S.
,
Mahaut
,
S.
, and
Le Ber
,
L.
,
2007
, “
Simulation and Data Processing for Ultrasonic Phased-Arrays Applications
,”
AIP Conference Proceedings
,
American Institute of Physics
,
Mar. 28
, Vol.
894
, No.
1
, pp.
799
805
.
12.
Steinberg
,
B. D.
,
1976
,
Principles of Aperture and Array System Design: Including Random and Adaptive Arrays
,
Wiley-Interscience
,
New York
, p.
374
.
13.
Wooh
,
S.-C.
, and
Shi
,
Y.
,
1999
, “
Optimum Beam Steering of Linear Phased Arrays
,”
Wave Motion
,
29
(
3
), pp.
245
265
. 10.1016/S0165-2125(98)00039-0
14.
Wooh
,
S.-C.
, and
Shi
,
Y.
,
1998
, “
Influence of Phased Array Element Size on Beam Steering Behavior
,”
Ultrasonics
,
36
(
6
), pp.
737
749
. 10.1016/S0041-624X(97)00164-9
15.
Rasmussen
,
M. F.
,
Christiansen
,
T. L.
,
Thomsen
,
E. V.
, and
Jensen
,
J. A.
,
2015
, “
3-D Imaging Using Row-Column-Addressed Arrays With Integrated Apodization-Part I: Apodization Design and Line Element Beamforming
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
62
(
5
), pp.
947
958
. 10.1109/TUFFC.2014.006531
You do not currently have access to this content.