Abstract

The use of eddy current (EC) arrays to detect damage in sandwich panels, such as disbonding of the carbon fiber reinforced polymer (CFRP) face-sheet to the core, is investigated. It is shown that the array is very sensitive to slight core crush and can readily find small dents and disbonds. At the same time, the eddy current array can look much deeper into the honeycomb to detect defects such as tears. The phase map of the EC signal can be used in some cases to distinguish between different types of damage. EC arrays offer the ability to rapidly scan large areas of CFRP panels.

References

References
1.
Hsu
,
D.K.
,
2008
, “
Nondestructive Inspection of Composite Structures: Methods and Practice
,”
17th World Conference on Nondestructive Testing
,
Shanghai, China
,
Oct. 25–28
.
2.
Kim
,
S. J.
,
2018
, “
Numerical Simulations of Tap Test on Composite Structures
,”
Int. J. Acoust. Vib.
,
23
(
2
), pp.
195
202
. 10.20855/ijav.2018.23.21381
3.
Kim
,
S. J.
, and
Kim
,
T.-U.
,
2016
, “
Damage Detection in Sandwich Structure Using Tap Test
,”
Proceedings of the INTER-NOISE 2016—45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future
,
Hamburg, Germany
,
Aug. 21–24
, pp.
4299
4303
.
4.
Kim
,
S. J.
,
2015
, “
Damage Detection in Composite Under In-Plane Load Using Tap Test
,”
J. Mech. Sci. Technol.
,
29
(
1
), pp.
199
207
.10.1007/s12206-014-1103-5
5.
Kim
,
S. J.
,
2008
, “
Damage Detection in Composite Laminates Using Coin-Tap Method
,”
Proceedings—European Conference on Noise Control
,
Paris, France
,
June 29–July 4
, pp.
405
409
.
6.
Hsu
,
D. K.
,
Peters
,
J. J.
, and
Barnard
,
D. J.
,
2004
, “
Development of Fieldable Systems for Inspecting Aircraft Composite Structures
,”
Key Eng. Mater.
,
270–273
(
III
), pp.
1845
1851
. 10.4028/www.scientific.net/KEM.270-273.1845
7.
Falk
,
J. P.
,
Steck
,
J. E.
, and
Smith
,
B. L.
,
2003
, “
A Nondestructive Testing Technique for Composite Panels Using Tap Test Acoustic Signals and Artificial Neural Networks
,”
Int. J. Smart Eng. Syst. Des.
,
5
(
4
), pp.
491
506
. 10.1080/10255810390445364
8.
Xu
,
Z.
,
Li
,
Y.
,
Zhao
,
S.
,
Ma
,
A.
,
Qiao
,
L.
, and
Wang
,
L.
,
2014
, “
The Applied of Self-Organizing Clustering Analysis on Coin-Tap Test System of Airplane Composite Structure
,”
Proceedings of 2014 Prognostics and System Health. Management Conference (PHM-2014 Hunan)
,
Zhangjiajie, China
,
Aug. 24–27
, pp.
360
363
.
9.
Federal Aviation Administration
,
2003
, “
Guidelines for Analysis, Testing, and Nondestructive Inspection of Impact-Damaged Composite Sandwich Structures
,”
Ar 02-121
.
10.
Schaal
,
C.
, and
Mal
,
A.
,
2017
, “
Core-Skin Disbond Detection in a Composite Sandwich Panel Using Guided Ultrasonic Waves
,”
ASME J. Nondestr. Eval. Diagn. Progn. Eng. Syst.
,
1
(
1
), p.
011006
.10.1115/1.4037544
11.
Tiwari
,
K. A.
, and
Raisutis
,
R.
,
2018
, “
Identification and Characterization of Defects in Glass Fiber Reinforced Plastic by Refining the Guided Lamb Waves
,”
Materials (Basel)
,
11
(
7
), p.
1173
. 10.3390/ma11071173
12.
Panda
,
R. S.
,
Rajagopal
,
P.
, and
Balasubramaniam
,
K.
,
2018
, “
Rapid Guided Wave Inspection of Complex Stiffened Composite Structural Components Using Non-Contact Air-Coupled Ultrasound
,”
Compos. Struct.
,
206
, pp.
247
260
. 10.1016/j.compstruct.2018.08.024
13.
Tiwari
,
K. A.
, and
Raisutis
,
R.
,
2018
, “
Post-Processing of Ultrasonic Signals for the Analysis of Defects in Wind Turbine Blade Using Guided Waves
,”
J. Strain Anal. Eng. Des.
,
53
(
8
), pp.
546
555
. 10.1177/0309324718772668
14.
Zhang
,
K.
, and
Zhou
,
Z.
,
2018
, “
Quantitative Characterization of Disbonds in Multilayered Bonded Composites Using Laser Ultrasonic Guided Waves
,”
NDT&E Int.
,
97
, pp.
42
50
. 10.1016/j.ndteint.2018.03.006
15.
Michalcová
,
L.
,
Rechcígel
,
L.
,
Bělský
,
P.
, and
Kucharský
,
P.
,
2018
, “
Fatigue Disbonding Analysis of Wide Composite Panels by Means of Lamb Waves
,”
Proceedings of the SPIE—International Society for Optical Engineering, No. 10599
.
16.
Zhang
,
K.
,
Li
,
S.
, and
Zhou
,
Z.
,
2018
, “
Detection of Disbonds in Multi-Layer Bonded Structures Using the Laser Ultrasonic Pulse-Echo Mode
,”
Ultrasonics
,
94
, pp.
411
418
. 10.1016/j.ultras.2018.06.005
17.
Fromme
,
P.
,
Reymondin
,
J.-P.
, and
Masserey
,
B.
,
2017
, “
High Frequency Guided Waves for Disbond Detection in Multi-Layered Structures
,”
Acta Acust. Acust.
,
103
(
6
), pp.
932
940
. 10.3813/AAA.919122
18.
Fiesler Saxena
,
I.
,
Guzman
,
N.
,
Hui
,
K.
, and
Mal
,
A. K.
,
2017
, “
Disbond Detection in a Composite Honeycomb Structure of an Aircraft Vertical Stabilizer by Fiber Bragg Gratings Detecting Guided Ultrasound Waves
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
231
(
16
), pp.
3001
3010
.10.1177/0954406217718571
19.
Garnier
,
C.
,
Pastor
,
M. L.
,
Eyma
,
F.
, and
Lorrain
,
B.
,
2011
, “
The Detection of Aeronautical Defects In Situ on Composite Structures Using Non Destructive Testing
,”
Compos. Struct.
,
93
(
5
), pp.
1328
1336
.10.1016/j.compstruct.2010.10.017
20.
Yang
,
R.
, and
He
,
Y.
,
2016
, “
Optically and Non-Optically Excited Thermography for Composites: A Review
,”
Infrared Phys. Technol.
,
75
, pp.
26
50
. 10.1016/j.infrared.2015.12.026
21.
Duan
,
Y.
,
Zhang
,
H.
,
Maldague
,
X. P. V.
,
Ibarra-Castanedo
,
C.
,
Servais
,
P.
,
Genest
,
M.
,
Sfarra
,
S.
, and
Meng
,
J.
,
2019
, “
Reliability Assessment of Pulsed Thermography and Ultrasonic Testing for Impact Damage of CFRP Panels
,”
NDT&E Int.
,
102
, pp.
77
83
. 10.1016/j.ndteint.2018.11.010
22.
Strugala
,
G.
,
Klugmann
,
M.
,
Landowski
,
M.
,
Szkodo
,
M.
, and
Mikielewicz
,
D.
,
2018
, “
A Universal NDT Method for Examination of Low Energy Impact Damage in CFRP With the Use of TLC Film
,”
Nondestr. Test. Eval.
,
33
(
3
), pp.
315
328
.10.1080/10589759.2018.1428323
23.
Pieczonka
,
L.
,
Aymerich
,
F.
, and
Staszewski
,
W. J.
,
2014
, “
Impact Damage Detection in Light Composite Sandwich Panels
,”
Procedia Eng.
,
88
, pp.
216
221
. 10.1016/j.proeng.2014.11.147
24.
Klepka
,
A.
,
Staszewski
,
W. J.
,
Di Maio
,
D.
, and
Scarpa
,
F.
,
2013
, “
Impact Damage Detection in Composite Chiral Sandwich Panels Using Nonlinear Vibro-Acoustic Modulations
,”
Smart Mater. Struct.
,
22
(
8
), p.
084011
.10.1088/0964-1726/22/8/084011
25.
He
,
Y.
,
Tian
,
G.
,
Pan
,
M.
, and
Chen
,
D.
,
2014
, “
Non-Destructive Testing of Low-Energy Impact in CFRP Laminates and Interior Defects in Honeycomb Sandwich Using Scanning Pulsed Eddy Current
,”
Composites Part B
,
59
, pp.
196
203
. 10.1016/j.compositesb.2013.12.005
26.
Reyno
,
T.
,
Underhill
,
P.
,
Krause
,
T.
,
Marsden
,
C.
, and
Wowk
,
D.
,
2017
, “
Surface Profiling and Core Evaluation of Aluminum Honeycomb Sandwich
,”
Sensors
,
17
(
9
), pp.
2114
2125
. 10.3390/s17092114
27.
Relinger
,
T.
,
2019
, “
Detection of Low-Velocity Impact Damage in Carbon Fiber Sandwich Panels Using Infrared Thermography
,”
M.Sc. thesis
,
Royal Military College of Canada
,
Kingston
.
28.
Ibarra-Castanedo
,
C.
,
Piau
,
J.-M.
,
Guilbert
,
S.
,
Avdelidis
,
N. P.
,
Genest
,
M.
,
Bendada
,
A.
, and
Maldague
,
X. P. V.
,
2009
, “
Comparative Study of Active Thermography Techniques for the Nondestructive Evaluation of Honeycomb Structures
,”
Res. Nondestr. Eval.
,
20
(
1
), pp.
1
31
. 10.1080/09349840802366617
29.
Krause
,
T. W.
, and
Underhill
,
P. R.
,
2019
, “
Selecting the Correct Electromagnetic Inspection Technology
,”
Adv. Mater. Lett.
,
10
(
7
), pp.
441
448
.10.5185/amlett.2019.2262
30.
Huang
,
C.
, and
Wu
,
X.
,
2015
, “
An Improved Ferromagnetic Material Pulsed Eddy Current Testing Signal Processing Method Based on Numerical Cumulative Integration
,”
NDT&E Int.
,
69
, pp.
35
39
. 10.1016/j.ndteint.2014.09.006
You do not currently have access to this content.