Abstract

Robust defect detection in the presence of grain noise originating from material microstructures is a challenging yet essential problem in ultrasonic non-destructive evaluation (NDE). In this paper, a novel method is proposed to suppress the gain noise and enhance the defect detection and imaging. The defect echo and grain noise are distinguished through analyzing the spatial location where the echo is originating from. This is achieved by estimation of the angle of arrival (AOA) of the returned echo and evaluation of the likelihood that the echo is reflected from the point where the array is focused or otherwise from the random reflectors like the grain boundaries. The method explicitly addresses the statistical models of the defect echoes and the spatial noise across the array aperture, as well as the correlation between the flaw signal and the interfering echoes; estimates the AOA and the likelihood in a dimension-reduced beam space via a linear transformation; and determines a weighting factor based on the mean likelihood. The factors are then normalized and utilized to correct and weigh the NDE images. Experiments on industrial samples of austenitic stainless steel and INCONEL Alloy 617 are conducted with a 5 MHz transducer array, and the results demonstrate that the grain noise is reduced by about 20 dB while the defect reflection is well retained, thus the great benefits of the method on enhanced defect detection and imaging in ultrasonic NDE are validated.

References

References
1.
Li
,
M.
, and
Hayward
,
G.
,
2012
, “
Ultrasound Non-Destructive Evaluation (NDE) Imaging With Transducer Arrays and Adaptive Processing
,”
Sensors
,
12
(
1
), pp.
42
54
. 10.3390/s120100042
2.
Papadakis
,
E. P.
,
1965
, “
Ultrasonic Attenuation Caused by Scattering in Poly-Crystalline Metals
,”
J. Acoust. Soc. Am.
,
37
(
4
), pp.
703
710
. 10.1121/1.1909399
3.
Neal
,
S. P.
,
Speckman
,
P. L.
, and
Enright
,
M. A.
,
1993
, “
Flaw Signature Estimation in Ultrasonic Nondestructive Evaluation Using the Wiener Filter With Limited Prior Information
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
40
(
4
), pp.
347
353
. 10.1109/58.251283
4.
Izquierdo
,
M. A. G.
,
Hernández
,
M. G.
,
Graullera
,
O.
, and
Ullate
,
L. G.
,
2002
, “
Time-Frequency Wiener Filtering for Structural Noise Reduction
,”
Ultrasonics
,
40
(
1–8
), pp.
259
261
. 10.1016/S0041-624X(02)00148-8
5.
Amir
,
I.
,
Bilgutay
,
N. M.
, and
Newhouse
,
V. L.
,
1986
, “
Analysis and Comparison of Some Frequency Compounding Algorithms for the Reduction of Ultrasonic Clutter
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
33
(
4
), pp.
402
411
. 10.1109/T-UFFC.1986.26848
6.
Gongzhang
,
R.
,
Li
,
M.
,
Xiao
,
B.
,
Lardner
,
T.
, and
Gachagan
,
A.
,
2014
, “Robust Frequency Diversity Based Algorithm for Clutter Noise Reduction of Ultrasonic Signals Using Multiple sub-Spectrum Phase Coherence,”
Review of Progress in Quantitative Nondestructive Evaluation
, Vol.
33
,
D. E.
Chimenti
,
L. J.
Bond
and
D. O.
,
Thompson
, eds., (
American Institute of Physics 1581
,
Melville, NY
), pp.
1948
1955
.
7.
Xiao
,
B.
,
Li
,
M.
,
Gongzhang
,
R.
,
O’Leary
,
R.
, and
Gachagan
,
A.
,
2014
, “Image de-Noising via Spectral Distribution Similarity Analysis for Ultrasonic Non-Destructive Evaluation,”
Review of Progress in Quantitative Nondestructive Evaluation
, Vol.
33
,
D. E.
Chimenti
,
L, J.
Bond
and
D. O.
Thompson
, eds., (
American Institute of Physics 1581
,
Melville, NY
), pp.
1941
1947
.
8.
Li
,
M.
, and
Hayward
,
G.
,
2016
, “Optimal Matched Filter Design for Ultrasonic NDE of Coarse Grain Materials,”
Review of Progress in Quantitative Nondestructive Evaluation
, Vol.
35
,
D. E.
Chimenti
and
L. J.
Bond
, eds., (
American Institute of Physics 1430
,
Melville, NY
), p.
020011
.
9.
Synnevag
,
J. F.
,
Austeng
,
A.
, and
Holm
,
S.
,
2007
, “
Adaptive Beamforming Applied to Medical Ultrasound Imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
54
(
8
), pp.
1606
1613
. 10.1109/TUFFC.2007.431
10.
Li
,
P.-C.
, and
Li
,
M.-L.
,
2003
, “
Adaptive Imaging Using the Generalized Coherence Factor
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
50
(
2
), pp.
128
141
. 10.1109/TUFFC.2003.1182117
11.
Li
,
F.
, and
Liu
,
H.
,
1994
, “
Statistical Analysis of Beam-Space Estimation for Direction-of-Arrivals
,”
IEEE Trans. Signal Process.
,
42
(
3
), pp.
604
610
. 10.1109/78.277852
12.
Li
,
M.
, and
Lu
,
Y.
,
2008
, “
Maximum Likelihood DOA Estimation in Unknown Colored Noise Fields
,”
IEEE Trans. Aerosp. Electron. Syst.
,
44
(
3
), pp.
1079
1090
. 10.1109/TAES.2008.4655365
13.
Anderson
,
S.
,
1993
, “
On Optimal Dimension Reduction for Sensor Array Signal Processing
,”
Signal Process.
,
30
(
2
), pp.
245
256
. 10.1016/0165-1684(93)90150-9
14.
Forster
,
P.
, and
Vezzosi
,
G.
,
1987
, “
Application of Spheroidal Sequences to Array Processing
,”
ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing
,
Dallas, TX
, pp.
2267
2271
,
15.
Eriksson
,
J.
, and
Viberg
,
M.
,
2000
, “
Adaptive Data Reduction for Signal Observed in Spatially Colored Noise
,”
Signal Process.
,
80
(
9
), pp.
1823
1831
. 10.1016/S0165-1684(00)00091-8
16.
Li
,
M.
, and
Lu
,
Y.
,
2006
, “
Dimension Reduction for Array Processing with Robust Interference Cancellation
,”
IEEE Trans. Aerosp. Electron. Syst.
,
42
(
1
), pp.
103
112
. 10.1109/TAES.2006.1603408
17.
Stoica
,
P.
, and
Nehorai
,
A.
,
1989
, “
MUSIC, Maximum Likelihood, and Cramer-Rao Bound
,”
IEEE Trans. Acoust. Speech Signal Process.
,
37
(
5
), pp.
720
741
. 10.1109/29.17564
18.
Li
,
M.
, and
Lu
,
Y.
,
2007
, “
A Refined Genetic Algorithm for Accurate and Reliable DOA Estimation With a Sensor Array
,”
Wireless Pers. Commun.
,
43
(
2
), pp.
533
547
. 10.1007/s11277-007-9248-5
19.
INCONEL 617 Technical Data
, http://www.hightempmetals.com/techdata/hitempInconel617data.php, Accessed in Oct. 2019.
You do not currently have access to this content.