Abstract

Nonlinear ultrasonic (NLU) techniques have emerged as a potential solution to improve the resolution of nondestructive measurements to detect microstructural changes of cyclically loaded materials. However, current NLU methods need power-demanding instrumentation that is useful only in the laboratory settings. On the other hand, phased array systems provide the capability of sensing such changes when the later portion of the elastic waveforms, called diffuse field, is analyzed. Moreover, phased array systems are an excellent solution for field test measurement and imaging of material damage. This study explores the use of NLU metrics based on ratios of harmonic amplitudes and frequencies to map the buildup of damage precursors, such as crystal dislocations, under cyclic loading within the microstructure of fatigued 2024-T3 aluminum specimens. The results show that these metrics are highly sensitive to microstructural fatigue damage making them significantly important to measure mechanical properties, such as fracture toughness, that are extremely useful in predicting the remaining useful life of a studied material. A nonlinear metric of elastic energy that encapsulates the nonlinear effects of subharmonic and higher-harmonic generations and frequency ratio is proposed. These effects of spectral energy shifts are combined making this metric highly sensitive to nano- and micro-scale damage within the fatigued medium.

References

References
1.
Fine
,
M.
, and
Chung
,
Y.-W.
,
1996
,
ASM Metals Handbook
,
S. R.
Lampman
, ed., Vol.
19
,
Materials Park, ASM International
,
Cleveland, OH
, pp.
63
72
.
2.
Hirao
,
M.
,
Ogi
,
H.
,
Suzuki
,
N.
, and
Ohtani
,
T.
,
2000
, “
Ultrasonic Attenuation Peak During Fatigue of Polycrystalline Copper
,”
Acta Mater.
,
48
(
2
), pp.
517
524
. 10.1016/S1359-6454(99)00346-8
3.
Generazio
,
E.
,
Roth
,
D.
, and
Baaklini
,
G.
,
1988
, “
Imaging Subtle Microstructural Variations in Ceramics With Precision Ultrasonic Velocity and Attenuation Measurements
,”
Rev. Prog. Quant. Nondestr. Eval.
,
7
(
B
), pp.
1237
1246
. 10.1007/978-1-4613-0979-6_43
4.
Ogi
,
H.
,
Hirao
,
M.
, and
Minoura
,
K.
,
1997
, “
Noncontact Measurement of Ultrasonic Attenuation During Rotating Fatigue Test of Steel
,”
J. Appl. Phys.
,
81
(
8
), pp.
3677
3684
. 10.1063/1.365489
5.
Ogi
,
H.
,
Hamaguchi
,
T.
, and
Hirao
,
M.
,
2000
, “
Ultrasonic Attenuation Peak in Steel and Aluminum Alloy During Rotating Bending Fatigue
,”
Metall. Mater. Trans. A
,
31
(
4
), pp.
1121
1128
. 10.1007/s11661-000-0107-1
6.
Bunget
,
G.
,
Goff
,
A.
,
Brown
,
N.
,
Demo
,
J.
,
Friedersdorf
,
F.
,
Ghoshal
,
A.
,
Pepi
,
M.
,
Siddhant
,
D.
, and
Chattopadhyay
,
A.
,
2015
, “
Identification of Material Damage Precursors Using Nonlinear Ultrasonics
,”
51st AIAA/SAE/ASEE Joint Propulsion Conference
,
Orlando, FL
,
July 27–28
, p.
5837
.
7.
Frouin
,
J.
,
Sathish
,
S.
,
Matikas
,
T.
, and
Na
,
J.
,
1999
, “
Ultrasonic Linear and Nonlinear Behavior of Fatigued Ti–6Al–4V
,”
J. Mater. Res.
,
14
(
4
), pp.
1295
1298
. 10.1557/JMR.1999.0176
8.
Nagy
,
P.
,
1998
, “
Fatigue Damage Assessment by Nonlinear Material Characterization
,”
Ultrasonics
,
36
(
1–5
), pp.
375
381
. 10.1016/S0041-624X(97)00040-1
9.
Hikata
,
A.
,
Chick
,
B.
, and
Elbaum
,
C.
,
1965
, “
Dislocation Contribution to the Second Harmonic Generation of Ultrasonic Wave
,”
J. Appl. Phys.
,
36
(
1
), pp.
229
236
. 10.1063/1.1713881
10.
Yost
,
W.
,
Cantrell
,
J.
, and
Breazeale
,
M.
,
1981
, “
Ultrasonic Nonlinearity Parameters and Third-Order Elastic Constants of Copper Between 300 and 3°K
,”
J. Appl. Phys.
,
52
(
1
), p.
126
. 10.1063/1.328443
11.
Peters
,
R.
, and
Arnold
,
R.
,
1971
, “
Ultrasonic Third-Harmonic Generation in Strontium Titanate Single Crystals
,”
J. Appl. Phys.
,
42
(
3
), pp.
980
983
. 10.1063/1.1660196
12.
Cantrell
,
J.
, and
Yost
,
W.
,
1994
, “
Acoustic Harmonic Generation From Fatigue-Induced Dislocation Dipoles
,”
Philos. Mag. A
,
69
(
2
), pp.
315
326
. 10.1080/01418619408244346
13.
Bunget
,
G.
,
Henley
,
S.
,
Glass
,
C.
,
Rogers
,
J.
,
Webster
,
M.
,
Farinholt
,
K.
,
Friedersdorf
,
F.
,
Pepi
,
M.
,
Ghoshal
,
A.
,
Datta
,
S.
, and
Chattopadhyay
,
A.
,
2020
, “
Decomposition Method to Detect Fatigue Damage Precursors in Thin Components Through Nonlinear Ultrasonic With Collinear Mixing Contributions
,”
ASME J. NDE Diag. Progn. Engr. Sys.
,
3
(
2
), p.
021003
. 10.1115/1.4045960
14.
Granato
,
A.
, and
Lucke
,
K.
,
1956
, “
Theory of Mechanical Damping Due to Dislocations
,”
J. Appl. Phys.
,
27
(
6
), pp.
583
593
. 10.1063/1.1722436
15.
Abeele
,
K. V. D.
,
Sutin
,
A.
,
Carmeliet
,
J.
, and
Johnson
,
P.
,
2001
, “
Micro-Damage Diagnostics Using Nonlinear Elastic Wave Spectroscopy (NEWS)
,”
NDT&E Int.
,
34
(
4
), pp.
239
248
. 10.1016/S0963-8695(00)00064-5
16.
Damme
,
B. V.
, and
Abeele
,
K. V. D.
,
2014
, “
The Application of Nonlinear Reverberation Spectroscopy for the Detection of Localized Fatigue Damage
,”
J. Nondestruct. Eval.
,
33
, pp.
236
268
. 10.1007/s10921-014-0230-3
17.
Abeele
,
K.-A.
,
Johnson
,
P.
, and
Guyer
,
R.
,
1997
, “
On the Quasi-Analytic Treatment of Hysteretic Nonlinear Response in Elastic Wave Propagation
,”
J. Acoust. Soc. Am.
,
101
(
4
), pp.
1885
1898
. 10.1121/1.418198
18.
Lesnicki
,
K.
,
Kim
,
J.
,
Kurtis
,
K.
, and
Jacobs
,
L.
,
2013
, “
Accelerated Determination of ASR Susceptibility During Concrete Prism Testing Through Nonlinear Resonance Acoustic Spectroscopy
,”
US Department of Transportation
,
McLean, VA
.
19.
Ohtani
,
T.
, and
Ishii
,
Y.
,
2012
, “
Nonlinear Resonant Ultrasound Spectroscopy (NRUS) Applied to Fatigue Damage Evaluation in a Pure Copper
,”
Nonlinear Acoustics State-of-the-Art and Perspective, AIP Conference Proceedings
,
Tokyo, Japan
,
May 21–24
, Vol.1474, pp. 203–206.
20.
Aki
,
K.
, and
Chouet
,
B.
,
1975
, “
Origin of Coda Waves: Source, Attenuation, and Scattering Effects
,”
J. Geophys. Res.
,
80
(
23
), pp.
3322
3342
. 10.1029/JB080i023p03322
21.
Snieder
,
R.
,
Gret
,
A.
,
Douma
,
H.
, and
Scales
,
J.
,
2002
, “
Coda Wave Interferometry for Estimating Nonlinear Behavior in Seismic Velocity
,”
Science
,
295
(
5563
), pp.
2253
2255
. 10.1126/science.1070015
22.
Poupinet
,
G.
,
Ellsworth
,
W.
, and
Frechet
,
J.
,
1984
, “
Monitoring Velocity Variations in the Crust Using Earthquake Doublets: An Application to the Calaveras Fault, California
,”
J. Geophys. Res.
,
89
(
B7
), pp.
5719
5731
. 10.1029/JB089iB07p05719
23.
Wang
,
W.
, and
Shearer
,
P.
,
2018
, “
An Improved Method to Determine Coda-Q, Earthquake Magnitude, and Site Amplification: Theory and Application to Southern California
,”
J. Geophys. Res.
,
124
(
1
), pp.
578
598
. 10.1029/2018JB015961
24.
Frojd
,
P.
, and
Ulriksen
,
P.
,
2016
, “
Amplitude and Phase Measurements of Continuous Diffuse fields for Structural Health Monitoring of Concrete Structures
,”
NDT&E Int.
,
77
, pp.
35
41
. 10.1016/j.ndteint.2015.10.003
25.
Schurr
,
D.
,
Kim
,
J.
,
Sabra
,
K.
, and
Jacobs
,
L.
,
2011
, “
Damage Detection in Concrete Using Coda Wave Interferometry
,”
NDT&E Int.
,
44
(
8
), pp.
728
735
. 10.1016/j.ndteint.2011.07.009
26.
Weaver
,
R.
,
1987
,
Solid Mechanics Research for Quantitative Non-Destructive Evaluation
,
J. D.
Achenbach
and
Y.
Rajapakse
, eds.,
Springer
,
Dordrecht
, pp.
425
434
.
27.
Michaels
,
J.
, and
Michaels
,
T.
,
2005
, “
Detection of Structural Damage From the Local Temporal Coherence of Diffuse Ultrasonic Signals
,”
IEEE Trans. Ultrason. Eng.
,
52
(
10
), pp.
1769
1782
. 10.1109/tuffc.2005.1561631
28.
Shokouhi
,
P.
,
2013
, “
Stress- and Damage-Induced Changes in Coda Wave Velocities in Concrete
,”
QNDE, AIP Conference Proceedings
,
Baltimore, MD
,
July 21–26
.
29.
Payan
,
C.
,
Garnier
,
V.
, and
Moysan
,
J.
,
2010
, “
Potential of Nonlinear Ultrasonic Indicators for Nondestructive Testing of Concrete
,”
Adv. Civ. Eng.
,
2010
, p.
1155
. 10.1155/2010/238472
30.
Larose
,
E.
, and
Hall
,
S.
,
2009
, “
Monitoring Stress Related Velocity Variation in Concrete With a 2.10(−5) Relative Resolution Using Diffuse Ultrasound
,”
J. Acoust. Soc. Am.
,
125
(
4
), pp.
1853
1856
. 10.1121/1.3079771
31.
Livings
,
R.
,
Dayal
,
V.
, and
Barnard
,
D.
,
2015
, “
Feasibility of Detecting Fatigue Damage in Composites With Coda Waves
,”
41st QNDE AIP Conference Proceedings
,
Minneapolis, MN
,
July 25–31
, Vol.
1650
, pp.
1130
1139
.
32.
Ohara
,
Y.
,
Mihara
,
T.
, and
Yamanaka
,
K.
,
2006
, “
Effect of Adhesion Force Between Crack Planes on Subharmonic and DC Reponses in Nonlinear Ultrasound
,”
Ultrasonics
,
44
(
2
), pp.
194
199
. 10.1016/j.ultras.2005.10.006
33.
Ohara
,
Y.
,
Horinouchi
,
S.
,
Hashimoto
,
M.
,
Shintaku
,
Y.
, and
Yamanaka
,
K.
,
2011
, “
Nonlinear Ultrasonic Imaging Method for Closed Cracks Using Subtraction of Responses at Different External Loads
,”
Ultrasonics
,
51
(
6
), pp.
661
666
. 10.1016/j.ultras.2010.12.010
34.
Ohara
,
Y.
,
Potter
,
J.
,
Nakajima
,
H.
,
Tsuji
,
T.
, and
Mihara
,
T.
,
2019
, “
Multi-Mode Nonlinear Ultrasonic Phased Array for Imaging Closed Cracks
,”
Jpn. J. Appl. Phys.
,
58
(
SG
), pp.
1
7
. 10.7567/1347-4065/ab0adc
35.
Potter
,
J.
, and
Croxford
,
A.
,
2018
, “
Characterization of Nonlinear Ultrasonic Diffuse Energy Imaging
,”
IEEE Trans. Ultrason. Eng.
,
65
(
5
), pp.
870
880
. 10.1109/TUFFC.2018.2816243
36.
Croxford
,
A.
,
Cheng
,
J.
, and
Potter
,
J.
,
2016
, “
Nonlinear Phased Array Imaging
,”
Proceedings of SPIE Conference
,
Las Vegas, NV
,
Mar. 20–24
, Vol.
9805
.
37.
Potter
,
J.
,
Croxford
,
A.
, and
Wilcox
,
P.
,
2014
, “
Nonlinear Ultrasonic Phased Array Imaging
,”
Phys. Rev. Lett.
,
113
(
14
), pp.
144301
. 10.1103/PhysRevLett.113.144301
38.
Haupert
,
S.
,
Renaud
,
G.
, and
Schumm
,
A.
,
2017
, “
Ultrasonic Imaging of Nonlinear Scatterers Buried in a Medium
,”
NDT&E Int.
,
87
, pp.
1
6
. 10.1016/j.ndteint.2016.12.010
39.
Dao
,
G.
,
Braconnier
,
D.
, and
Gruber
,
M.
,
2015
, “
Full-Matrix Capture With a Customizable Phased Array Instrument
,”
41st QNDE AIP Conference Proceedings 1650
,
Boise, ID
,
July 20–25
, p.
1001
.
40.
Hunter
,
A.
,
Drinkwater
,
B.
, and
Wilcox
,
P.
,
2008
, “
The Wavenumber Algorithm for Full-Matrix Imaging Using an Ultrasonic Array
,”
IEEE Trans. Ultrason. Eng.
,
55
(
11
), pp.
2450
2462
. 10.1109/TUFFC.952
41.
Pruell
,
C.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L.
,
2009
, “
Evaluation of Fatigue Damage Using Nonlinear Guided Waves
,”
Smart Mater. Struct.
,
18
(
3
), pp.
1
7
. 10.1088/0964-1726/18/3/035003
42.
Kim
,
C.
,
Park
,
I.
, and
Jhang
,
K.
,
2009
, “
Nonlinear Ultrasonic Characterization of Thermal Degradation in Ferritic 2.25Cr–1Mo Steel
,”
NDT&E Int.
,
42
(
3
), pp.
204
209
. 10.1016/j.ndteint.2008.09.002
43.
Hikata
,
A.
,
Truell
,
R.
,
Granato
,
A.
,
Chick
,
B.
, and
Lucke
,
K.
,
1956
, “
Sensitivity of Ultrasonic Attenuation and Velocity Changes to Plastic Deformation and Recovery in Aluminum
,”
J. Appl. Phys.
,
27
(
4
), pp.
396
404
. 10.1063/1.1722383
44.
Sathish
,
S.
,
Frouin
,
J.
, and
Na
,
J.
,
2004
,
Nondestructive Material Characterization With Applications to Aerospace Materials
,
N. G. H.
Meyendorf
,
P. B.
Nagy
, and
S. I.
Rokhlin
, eds.,
Springer
,
Berlin
, pp.
206
233
.
You do not currently have access to this content.