Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The increased focus on predictive maintenance of safety-critical engineering structures requires an onboard structural health monitoring system, which is reliable and robust to provide accurate predictions of health metrics of structures while also being efficient and streamlined to facilitate autonomous data processing and real-time decision-making capabilities. An onboard structural health monitoring system with the capability to continuously monitor and interrogate a structure, describe its current state, and assess the operational risks of the degraded structure needs to be developed and matured so that it can be deployed in practical, real-time monitoring scenarios. This would constitute a cyberphysical system in structural health monitoring. A cyberphysical system is a mechanism that is controlled by computer-based algorithms integrated with the Internet and working with users. There exists a physical domain that is under examination and its digital counterpart, which is informed by data from the physical as well as simulation models. While there exist multiple surveys on the overarching advantages, limitations, and potential of realizing a cyberphysical system, innovation on structural systems, in-line signal processing, and damage event detection in the context of a cyberphysical system, especially from an experimental point of view is still in its infancy. In this work, we implement a versatile cyberphysical framework—CyberSHM using a sparse network of transducers and an edge computing device. Hosted on the structure of interest, the transducers possess the capability to interrogate the structure continuously, periodically, on-demand or autonomously when triggered by damage or an unplanned acoustic event. In addition, the device also possesses efficient on-edge feature extraction and signal classification capabilities, which serve as crucial starting points for further damage analysis and characterization on the digital layer.

References

1.
Sause
,
M. G. R.
, and
Jasiũnienė
,
E.
, eds.
2021
,
Structural Health Monitoring Damage Detection Systems for Aerospace
(
Springer Aerospace Technology
),
Springer International Publishing
,
Cham
.
2.
Arora
,
V.
,
Wijnant
,
Y.
, and
de Boer
,
A.
,
2014
, “
Acoustic-Based Damage Detection Method
,”
Appl. Acoust.
,
80
, pp.
23
27
.
3.
Verstrynge
,
E.
,
Lacidogna
,
G.
,
Accornero
,
F.
, and
Tomor
,
A.
,
2021
, “
A Review on Acoustic Emission Monitoring for Damage Detection in Masonry Structures
,”
Construct. Build. Mater.
,
268
, p.
121089
.
4.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
,
2016
, “
Guided Wave Based Structural Health Monitoring: A Review
,”
Smart Mater. Struct.
,
25
(
5
), p.
053001
.
5.
Capineri
,
L.
, and
Bulletti
,
A.
,
2021
, “
Ultrasonic Guided-Waves Sensors and Integrated Structural Health Monitoring Systems for Impact Detection and Localization: A Review
,”
Sensors
,
21
(
9
), p.
2929
.
6.
Sawant
,
S.
,
Banerjee
,
S.
, and
Tallur
,
S.
,
2021
, “
Performance Evaluation of Compressive Sensing Based Lost Data Recovery Using OMP for Damage Index Estimation in Ultrasonic SHM
,”
Ultrasonics
,
115
, p.
106439
.
7.
Jayawardhana
,
M.
,
Zhu
,
X.
,
Liyanapathirana
,
R.
, and
Gunawardana
,
U.
,
2017
, “
Compressive Sensing for Efficient Health Monitoring and Effective Damage Detection of Structures
,”
Mech. Syst. Signal. Process.
,
84
, pp.
414
430
.
8.
Bao
,
Y.
,
Li
,
H.
, and
Ou
,
J.
,
2014
, “
Emerging Data Technology in Structural Health Monitoring: Compressive Sensing Technology
,”
J. Civil. Struct. Health Monit.
,
4
(
2
), pp.
77
90
.
9.
Zhang
,
C.
,
Mousavi
,
A. A.
,
Masri
,
S. F.
,
Gholipour
,
G.
,
Yan
,
K.
, and
Li
,
X.
,
2022
, “
Vibration Feature Extraction Using Signal Processing Techniques for Structural Health Monitoring: A Review
,”
Mech. Syst. Signal. Process.
,
177
, p.
109175
.
10.
Mountassir
,
M. E.
,
Yaacoubi
,
S.
,
Ragot
,
J.
,
Mourot
,
G.
, and
Maquin
,
D.
,
2016
, “
Feature Selection Techniques for Identifying the Most Relevant Damage Indices in SHM Using Guided Waves
,”
8th European Workshop On Structural Health Monitoring (EWSHM 2016)
,
Bilbao, Spain
,
July 5–8
, Vol. 2, pp.
1228
1235
.
11.
Dafydd
,
I.
, and
Sharif Khodaei
,
Z.
,
2020
, “
Analysis of Barely Visible Impact Damage Severity With Ultrasonic Guided Lamb Waves
,”
Struct. Health Monit.
,
19
(
4
), pp.
1104
1122
.
12.
Gullapalli
,
A.
,
Beedasy
,
V.
,
Vincent
,
J. D. S.
,
Leong
,
Z.
,
Smith
,
P.
, and
Morley
,
N.
,
2021
, “
Flat Inkjet–Printed Copper Induction Coils for Magnetostrictive Structural Health Monitoring: A Comparison With Bulk Air Coils and an Anisotropic Magnetoresistive Sensor (AMR) Sensor
,”
Adv. Eng. Mater.
,
23
(
9
), p.
2100313
.
13.
Liu
,
Z. H.
,
Peng
,
Q. L.
,
Li
,
X.
,
He
,
C. F.
, and
Wu
,
B.
,
2020
, “
Acoustic Emission Source Localization With Generalized Regression Neural Network Based on Time Difference Mapping Method
,”
Exp. Mech.
,
60
(
5
), pp.
679
694
.
14.
Sony
,
S.
,
Dunphy
,
K.
,
Sadhu
,
A.
, and
Capretz
,
M.
,
2021
, “
A Systematic Review of Convolutional Neural Network-Based Structural Condition Assessment Techniques
,”
Eng. Struct.
,
226
, p.
111347
.
15.
Chandrasekhar
,
K.
,
Stevanovic
,
N.
,
Cross
,
E. J.
,
Dervilis
,
N.
, and
Worden
,
K.
,
2019
, “
Gaussian Processes for Structural Health Monitoring of Wind Turbine Blades
,”
Structural Health Monitoring 2019
, Vol. 2, pp.
2710
2717
.
16.
Farreras-Alcover
,
I.
,
Chryssanthopoulos
,
M. K.
, and
Andersen
,
J. E.
,
2015
, “
Regression Models for Structural Health Monitoring of Welded Bridge Joints Based on Temperature, Traffic and Strain Measurements
,”
Struct. Health. Monit.
,
14
(
6
), pp.
648
662
.
17.
Kundu
,
A.
,
Sikdar
,
S.
,
Eaton
,
M.
, and
Navaratne
,
R.
,
2020
, “A Generic Framework for Application of Machine Learning in Acoustic Emission-Based Damage Identification,”
Proceedings of the 13th International Conference on Damage Assessment of Structures
,
M. A.
Wahab
, ed.,
Springer
,
Singapore, Singapore
, pp.
244
262
.
18.
Sikdar
,
S.
,
Liu
,
D.
, and
Kundu
,
A.
,
2022
, “
Acoustic Emission Data Based Deep Learning Approach for Classification and Detection of Damage-Sources in a Composite Panel
,”
Comp. Part B: Eng.
,
228
, p.
109450
.
19.
Nair
,
A.
,
Cai
,
C.
, and
Kong
,
X.
,
2019
, “
Acoustic Emission Pattern Recognition in CFRP Retrofitted RC Beams for Failure Mode Identification
,”
Comp. Part B: Eng.
,
161
, pp.
691
701
.
20.
Barbosh
,
M.
,
Dunphy
,
K.
, and
Sadhu
,
A.
,
2022
, “
Acoustic Emission-Based Damage Localization Using Wavelet-Assisted Deep Learning
,”
J. Infrastruct. Preserv. Resil.
,
3
(
1
), p.
6
.
21.
Abbassi
,
A.
,
Römgens
,
N.
,
Tritschel
,
F. F.
,
Penner
,
N.
, and
Rolfes
,
R.
,
2023
, “
Evaluation of Machine Learning Techniques for Structural Health Monitoring Using Ultrasonic Guided Waves Under Varying Temperature Conditions
,”
Struct. Health. Monit.
,
22
(
2
), pp.
1308
1325
.
22.
Schnur
,
C.
,
Goodarzi
,
P.
,
Lugovtsova
,
Y.
,
Bulling
,
J.
,
Prager
,
J.
,
Tschöke
,
K.
,
Moll
,
J.
,
Schütze
,
A.
, and
Schneider
,
T.
,
2022
, “
Towards Interpretable Machine Learning for Automated Damage Detection Based on Ultrasonic Guided Waves
,”
Sensors
,
22
(
1
), p.
406
.
23.
Yang
,
Z.
,
Yang
,
H.
,
Tian
,
T.
,
Deng
,
D.
,
Hu
,
M.
,
Ma
,
J.
,
Gao
,
D.
,
Zhang
,
J.
,
Ma
,
S.
,
Yang
,
L.
,
Xu
,
H.
, and
Wu
,
Z.
,
2023
, “
A Review on Guided-Ultrasonic-Wave-Based Structural Health Monitoring: From Fundamental Theory to Machine Learning Techniques
,”
Ultrasonics
,
133
, p.
107014
.
24.
Meo
,
M.
, and
Zumpano
,
G.
,
2005
, “
On the Optimal Sensor Placement Techniques for a Bridge Structure
,”
Eng. Struct.
,
27
(
10
), pp.
1488
1497
.
25.
Suryanarayana
,
G.
,
Arroyo
,
J.
,
Helsen
,
L.
, and
Lago
,
J.
,
2021
, “
A Data Driven Method for Optimal Sensor Placement in Multi-Zone Buildings
,”
Energy Build.
,
243
, p.
110956
.
26.
Ostachowicz
,
W.
,
Soman
,
R.
, and
Malinowski
,
P.
,
2019
, “
Optimization of Sensor Placement for Structural Health Monitoring: A Review
,”
Struct. Health. Monit.
,
18
(
3
), pp.
963
988
.
27.
Rautela
,
M.
,
Senthilnath
,
J.
,
Moll
,
J.
, and
Gopalakrishnan
,
S.
,
2021
, “
Combined Two-level Damage Identification Strategy Using Ultrasonic Guided Waves and Physical Knowledge Assisted Machine Learning
,”
Ultrasonics
,
115
, p.
106451
.
28.
Zhang
,
Z.
, and
Sun
,
C.
,
2021
, “
Structural Damage Identification Via Physics-Guided Machine Learning: A Methodology Integrating Pattern Recognition With Finite Element Model Updating
,”
Struct. Health. Monit.
,
20
(
4
), pp.
1675
1688
.
29.
Yan
,
W.-J.
,
Chronopoulos
,
D.
,
Papadimitriou
,
C.
,
Cantero-Chinchilla
,
S.
, and
Zhu
,
G.-S.
,
2020
, “
Bayesian Inference for Damage Identification Based on Analytical Probabilistic Model of Scattering Coefficient Estimators and Ultrafast Wave Scattering Simulation Scheme
,”
J. Sound. Vib.
,
468
, p.
115083
.
30.
Cantero-Chinchilla
,
S.
,
Chiachío
,
J.
,
Chiachío
,
M.
,
Chronopoulos
,
D.
, and
Jones
,
A.
,
2019
, “
A Robust Bayesian Methodology for Damage Localization in Plate-Like Structures Using Ultrasonic Guided-Waves
,”
Mech. Syst. Signal. Process.
,
122
, pp.
192
205
.
31.
Wu
,
W.
,
Malik
,
M.
,
Cantero-Chinchilla
,
S.
,
Lawrie
,
T.
,
Yan
,
W.
,
Tanner
,
G.
,
Remenyte-Prescott
,
R.
, and
Chronopoulos
,
D.
,
2022
, “
Guided Waves-Based Damage Identification in Plates Through an Inverse Bayesian Process
,”
Ultrasonics
,
125
, p.
106773
.
32.
Li
,
Q.
,
Du
,
X.
,
Ni
,
P.
,
Han
,
Q.
,
Xu
,
K.
, and
Yuan
,
Z.
,
2024
, “
Efficient Bayesian Inference for Finite Element Model Updating With Surrogate Modeling Techniques
,”
J. Civil Struct. Health Monit.
,
14
, pp.
1
19
.
33.
Marrel
,
A.
, and
Iooss
,
B.
,
2024
, “
Probabilistic Surrogate Modeling by Gaussian Process: A Review on Recent Insights in Estimation and Validation
,”
Reliab. Eng. Syst. Saf.
,
247
, p.
110094
.
34.
Mishra
,
A.
, and
Ray
,
A. K.
,
2023
, “
Multi-Access Edge Computing Assisted Ultra-Low Energy Scheduling and Harvesting in Multi-hop Wireless Sensor and Actuator Network for Energy Neutral Self-sustainable Next-Gen Cyber-Physical System
,”
Future Generat. Comput. Syst.
,
141
, pp.
298
324
.
35.
Zander
,
J.
,
Mosterman
,
P. J.
,
Padir
,
T.
,
Wan
,
Y.
, and
Fu
,
S.
,
2015
, “
Cyber-Physical Systems Can Make Emergency Response Smart
,”
Procedia. Eng.
,
107
, pp.
312
318
.
36.
Wang
,
Y.
,
Tan
,
G.
,
Wang
,
Y.
, and
Yin
,
Y.
,
2012
, “
Perceptual Control Architecture for Cyber–Physical Systems in Traffic Incident Management
,”
J. Syst. Architect.
,
58
(
10
), pp.
398
411
.
37.
Monisha
,
K.
, and
Rajasekhara Babu
,
M.
,
2019
, “
A Novel Framework for Healthcare Monitoring System Through Cyber-Physical System
,”
Springer Briefs in Applied Sciences and Technology
,
Springer
,
Singapore, Singapore
, pp.
21
36
.
38.
Haque
,
S. A.
,
Aziz
,
S. M.
, and
Rahman
,
M.
,
2014
, “
Review of Cyber-Physical System in Healthcare
,”
Int. J. Distribut. Sensor Netw.
,
10
(
4
), p.
217415
.
39.
Tucker
,
D.
,
Pezzini
,
P.
, and
Bryden
,
K. M.
,
2018
, “
Cyber-Physical Systems: A New Paradigm for Energy Technology Development
,”
Volume 1: Fuels, Combustion, and Material Handling; Combustion Turbines Combined Cycles; Boilers and Heat Recovery Steam Generators; Virtual Plant and Cyber-Physical Systems; Plant Development and Construction; Renewable Energy Systems
,
American Society of Mechanical Engineers
,
Lake Buena Vista, FL
, p.
V001T04A001
.
40.
Tanha
,
F. E.
,
Hasani
,
A.
,
Hakak
,
S.
, and
Gadekallu
,
T. R.
,
2022
, “
Blockchain-Based Cyber Physical Systems: Comprehensive Model for Challenge Assessment
,”
Comput. Electr. Eng.
,
103
, p.
108347
.
41.
Ch
,
R.
,
Srivastava
,
G.
,
Nagasree
,
Y. L. V.
,
Ponugumati
,
A.
, and
Ramachandran
,
S.
,
2022
, “
Robust Cyber-Physical System Enabled Smart Healthcare Unit Using Blockchain Technology
,”
Electronics
,
11
(
19
), p.
3070
.
42.
Doghri
,
W.
,
Saddoud
,
A.
, and
Chaari Fourati
,
L.
,
2022
, “
Cyber-Physical Systems for Structural Health Monitoring: Sensing Technologies and Intelligent Computing
,”
J. Supercomput.
,
78
(
1
), pp.
766
809
.
43.
Lee
,
E.
,
2015
, “
The Past, Present and Future of Cyber-Physical Systems: A Focus on Models
,”
Sensors
,
15
(
3
), pp.
4837
4869
.
44.
Griffor
,
E. R.
,
Greer
,
C.
,
Wollman
,
D. A.
, and
Burns
,
M. J.
,
2017
, “Framework for Cyber-Physical Systems: Volume 1, Overview,” Technical Report NIST SP 1500-201,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
45.
Zhang
,
K.
,
Shi
,
Y.
,
Karnouskos
,
S.
,
Sauter
,
T.
,
Fang
,
H.
, and
Colombo
,
A. W.
,
2023
, “
Advancements in Industrial Cyber-Physical Systems: An Overview and Perspectives
,”
IEEE Trans. Ind. Inf.
,
19
(
1
), pp.
716
729
.
46.
Fu
,
H.
,
Sharif-Khodaei
,
Z.
, and
Aliabadi
,
M. F.
,
2019
, “
An Energy-Efficient Cyber-Physical System for Wireless On-Board Aircraft Structural Health Monitoring
,”
Mech. Syst. Signal. Process.
,
128
, pp.
352
368
.
47.
Fu
,
H.
,
Sharif Khodaei
,
Z.
, and
Aliabadi
,
M. H. F.
,
2019
, “
An Event-Triggered Energy-Efficient Wireless Structural Health Monitoring System for Impact Detection in Composite Airframes
,”
IEEE Internet. Things J.
,
6
(
1
), pp.
1183
1192
.
48.
Leckey
,
C. A.
,
Rogge
,
M. D.
, and
Raymond Parker
,
F.
,
2014
, “
Guided Waves in Anisotropic and Quasi-Isotropic Aerospace Composites: Three-Dimensional Simulation and Experiment
,”
Ultrasonics
,
54
(
1
), pp.
385
394
.
49.
Hackmann
,
G.
,
Guo
,
W.
,
Yan
,
G.
,
Sun
,
Z.
,
Lu
,
C.
, and
Dyke
,
S.
,
2014
, “
Cyber-Physical Codesign of Distributed Structural Health Monitoring With Wireless Sensor Networks
,”
IEEE Trans. Parallel Distrib. Syst.
,
25
(
1
), pp.
63
72
.
50.
Wang
,
Q.
,
Hong
,
M.
, and
Su
,
Z.
,
2016
, “
A Sparse Sensor Network Topologized for Cylindrical Wave-Based Identification of Damage in Pipeline Structures
,”
Smart Mater. Struct.
,
25
(
7
), p.
075015
.
51.
Swartz
,
R. A.
,
Lynch
,
J. P.
,
Zerbst
,
S.
,
Sweetman
,
B.
, and
Rolfes
,
R.
,
2010
, “
Structural Monitoring of Wind Turbines Using Wireless Sensor Networks
,”
Smart Struct. Syst.
,
6
(
3
), pp.
183
196
.
52.
Qiu
,
L.
,
Deng
,
X.
,
Yuan
,
S.
,
Huang
,
Y.
, and
Ren
,
Y.
,
2018
, “
Impact Monitoring for Aircraft Smart Composite Skins Based on a Lightweight Sensor Network and Characteristic Digital Sequences
,”
Sensors
,
18
(
7
), p.
2218
.
53.
Han
,
S.
,
Xie
,
M.
,
Chen
,
H.-H.
, and
Y.
Ling
,
2014
, “
Intrusion Detection in Cyber-Physical Systems: Techniques and Challenges
,”
IEEE Syst. J.
,
8
(
4
), pp.
1052
1062
.
54.
Hüllermeier
,
E.
, and
Waegeman
,
W.
,
2021
, “
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
,”
Mach. Learn.
,
110
(
3
), pp.
457
506
.
55.
Mosallam
,
A.
,
2000
, “
Strength and Ductility of Reinforced Concrete Moment Frame Connections Strengthened With Quasi-Isotropic Laminates
,”
Comp. Part B: Eng.
,
31
(
6–7
), pp.
481
497
.
56.
Ullah
,
H.
,
Harland
,
A. R.
, and
Silberschmidt
,
V. V.
,
2015
, “
Dynamic Bending Behaviour of Woven Composites for Sports Products: Experiments and Damage Analysis
,”
Mater. Des.
,
88
, pp.
149
156
.
57.
Liu
,
B.
,
Cui
,
L.
,
Si
,
S.
, and
Wen
,
Y.
,
2016
, “
Performance Measures for Systems Under Multiple Environments
,”
IEEE/CAA J. Autom. Sinica
,
3
(
1
), pp.
90
95
.
58.
Mostaço-Guidolin
,
L. C.
,
Frigori
,
R. B.
,
Ruchko
,
L.
, and
Galvão
,
R. M.
,
2012
, “
SCTE: An Open-Source Perl Framework for Testing Equipment Control and Data Acquisition
,”
Comput. Phys. Commun.
,
183
(
7
), pp.
1511
1518
.
59.
Feng
,
B.
,
Ribeiro
,
A. L.
, and
Ramos
,
H. G.
,
2018
, “
Using Guided Ultrasonic Wave Inspection to Quantify the Length of Delaminations in Composite Laminates
,”
AIP Conference Proceedings
, Vol.
1949
,
AIP Publishing
.
60.
O’Shea
,
K.
, and
Nash
,
R.
,
2015
, “
An Introduction to Convolutional Neural Networks
,”
arXiv:1511.08458 [cs]
. https://arxiv.org/abs/1511.08458
61.
Bai
,
F.
,
Gagar
,
D.
,
Foote
,
P.
, and
Zhao
,
Y.
,
2017
, “
Comparison of Alternatives to Amplitude Thresholding for Onset Detection of Acoustic Emission Signals
,”
Mech. Syst. Signal. Process.
,
84
, pp.
717
730
.
62.
Abdulaziz
,
A. H.
,
Hedaya
,
M.
,
Elsabbagh
,
A.
,
Holford
,
K.
, and
McCrory
,
J.
,
2021
, “
Acoustic Emission Wave Propagation in Honeycomb Sandwich Panel Structures
,”
Comp. Struct.
,
277
, p.
114580
.
63.
Cavanaugh
,
J. E.
, and
Neath
,
A. A.
,
2019
, “
The Akaike Information Criterion: Background, Derivation, Properties, Application, Interpretation, and Refinements
,”
WIREs Comput. Stat.
,
11
(
3
), p.
e1460
.
64.
St–Onge
,
A.
,
2011
, “
Akaike Information Criterion Applied to Detecting First Arrival Times on Microseismic Data
,”
SEG Technical Program Expanded Abstracts 2011
,
30
(
1
), pp.
1658
1662
.
65.
Sedlak
,
P.
,
Sedlak
,
P.
,
Hirose
,
Y.
,
Enoki
,
M.
, and
Sikula
,
J.
,
2008
, “
Arrival Time Detection in Thin Multilayer Plates on the Basis of Akaike Information Criterion
,”
J. Acoust. Emiss.
,
26
, pp.
182
189
.
66.
Philibert
,
M.
,
Soutis
,
C.
,
Gresil
,
M.
, and
Yao
,
K.
,
2018
, “
Damage Detection in a Composite T-Joint Using Guided Lamb Waves
,”
Aerospace
,
5
(
2
), p.
40
.
67.
Mei
,
H.
,
James
,
R.
,
Haider
,
M. F.
, and
Giurgiutiu
,
V.
,
2020
, “
Multimode Guided Wave Detection for Various Composite Damage Types
,”
Appl. Sci.
,
10
(
2
), p.
484
.
68.
Willberg
,
C.
,
Koch
,
S.
,
Mook
,
G.
,
Pohl
,
J.
, and
Gabbert
,
U.
,
2012
, “
Continuous Mode Conversion of Lamb Waves in CFRP Plates
,”
Smart Mater. Struct.
,
21
(
7
), p.
075022
.
You do not currently have access to this content.