Abstract

Subchannel analysis codes are presently a requirement for design and safety analysis of nuclear reactors. Among the crucial inputs for these codes, the turbulent mixing factor holds particular significance. However, acquiring this factor through experimental means proves to be a challenging endeavor, primarily due to the necessity for precise pressure equilibrium between subchannels. Consequently, this requirement leads to the undertaking of expensive and intricate experiments for each new reactor or in cases where there are modifications in fuel bundle design. The need for direct numerical simulation (DNS) stems from the challenges and costs involved in experimental techniques, and the uncertainties due to empiricism in computational fluid dynamics (CFD) models. In this study, DNS has been conducted across six Reynolds numbers, ranging from 17,640 to 1.176 × 105, in the geometry of a pressurized water reactor (PWR) subchannel. The resulting turbulent flow structures have been computed and their dynamics are examined. Furthermore, this paper presents a methodology for directly calculating the turbulent mixing factor from the fluctuating velocity field obtained from DNS data. The turbulent mixing process has been scrutinized in-depth, and a correlation for the turbulent mixing factor is developed. It is noted that most of the mixing occurs in the near-wall region. The study suggests different mixing factors for mass and momentum mixing. This paper aims to provide a comprehensive insight into the turbulent mixing phenomenon.

References

1.
The RELAP5 Development Team,
2001
, “
RELAP5/MOD3 Code Manual
,” US-NRC, Washington, DC, Report No.
NUREG/CR-5535
.https://www.nrc.gov/docs/ML1103/ML110330200.pdf
2.
Bestion
,
D.
,
1990
, “
The Physical Closure Laws in CATHARE Code
,”
Nucl. Eng. Des.
,
124
(
3
), pp.
229
245
.10.1016/0029-5493(90)90294-8
3.
Webb
,
B. J.
,
1988
, “
COBRA-IV PC: A Personal Computer Version of COBRA-IV-I for Thermal-Hydraulic Analysis of Rod Bundle Nuclear Fuel Elements and Cores
,” Pacific Northwest Laboratory, Richland, Washington, Report No. PNL-6476.
4.
Galbraith
,
K. P.
,
1971
, “
Single Phase Turbulent Mixing Between Adjacent Channels in Rod Bundles
,” Ph.D. thesis,
Oregon State University
, Corvallis, OR.
5.
Rowe
,
D. S.
, and
Angle
,
C. W.
,
1967
, “
Crossflow Mixing Between Parallel Flow Channels During Boiling, Part II. Measurement of Flow and Enthalpy in Two Parallel Channels
,” Battelle Pacific Northwest Laboratory, Richland, WA, Report No. BNWL-1695.
6.
Walton
,
F. B.
,
1969
, “
Turbulent Mixing Measurements for Single-Phase Air, Single-Phase Water and Two-Phase Air-Water Flows in Adjacent Triangular-Triangular Subchannels
,” Master's thesis,
University of Windsor
,
Windsor, ON, Canada
.
7.
Hetsroni
,
G.
,
Leon
,
J.
, and
Hakim
,
M.
,
1968
, “
Cross Flow and Mixing of Water Between Semiopen Channels
,”
Nucl. Sci. Eng.
,
34
(
2
), pp.
189
193
.10.13182/NSE68-A19544
8.
Silin
,
N.
, and
Juanicó
,
L.
,
2006
, “
Experimental Study on the Reynolds Number Dependence of Turbulent Mixing in a Rod Bundle
,”
Nucl. Eng. Des.
,
236
(
18
), pp.
1860
1866
.10.1016/j.nucengdes.2006.02.006
9.
Wang
,
Z.
,
Jia
,
D.
, and
Yu
,
Z.
,
1983
, “
Experiment Investigation on the Turbulent Mixing Between Subchannels for Single-Phase Flow in a Simulated Bundle
,”
Chin. J. Nucl. Sci. Eng.
,
2
, p.
2
.https://caod.oriprobe.com//articles/34467987/mo_ni_yuan_jian_bang_shu_nei_zi_tong_dao_jian_dan_xiang_tuan_liu_jiao_.htm
10.
Rogers
,
J. T.
, and
Tahir
,
A.
,
1975
, “
Turbulent Interchange Mixing in Rod Bundles and the Role of Secondary Flows
,” Paper No. 75-HT-31.
11.
Smith
,
L. D.
,
Joffre
,
P.
,
Le Corre
,
J. M.
,
Waldemarsson
,
F.
,
Hallehn
,
A.
, and
Tejne
,
H.
,
2015
, “
High Resolution Thermal Mixing at Westinghouse ODEN Loop
,” 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (
NURETH-16
), Chicago, IL, Aug. 30–Sept. 4, pp.
3005
3016
.https://glc.ans.org/nureth-16/data/papers/13594.pdf
12.
Orszag
,
S. A.
, and
Patterson
,
G. S.
,
1972
, “
Numerical Simulation of Three-Dimensional Homogeneous Isotropic Turbulence
,”
Phys. Rev. Lett.
,
28
(
2
), pp.
76
79
.10.1103/PhysRevLett.28.76
13.
Moin
,
P.
, and
Mahesh
,
K.
,
1998
, “
Direct Numerical Simulation: A Tool in Turbulence Research
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
539
578
.10.1146/annurev.fluid.30.1.539
14.
Ishihara
,
T.
,
Gotoh
,
T.
, and
Kaneda
,
Y.
,
2009
, “
Study of High–Reynolds Number Isotropic Turbulence by Direct Numerical Simulation
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
165
180
.10.1146/annurev.fluid.010908.165203
15.
Laizet
,
S.
, and
Lamballais
,
E.
,
2009
, “
High-Order Compact Schemes for Incompressible Flows: A Simple and Efficient Method With Quasi-Spectral Accuracy
,”
J. Comput. Phys.
,
228
(
16
), pp.
5989
6015
.10.1016/j.jcp.2009.05.010
16.
Shams
,
A.
,
Roelofs
,
F.
,
Komen
,
E.
, and
Baglietto
,
E.
,
2013
, “
Quasi-Direct Numerical Simulation of a Pebble Bed Configuration, Part-1: Flow (Velocity) Field Analysis
,”
Nucl. Eng. Des.
,
263
, pp.
490
499
.10.1016/j.nucengdes.2013.02.015
17.
Shams
,
A.
,
Roelofs
,
F.
,
Komen
,
E.
, and
Baglietto
,
E.
,
2012
, “
Optimization of a Pebble Bed Configuration for Quasi-Direct Numerical Simulation
,”
Nucl. Eng. Des.
,
242
, pp.
331
340
.10.1016/j.nucengdes.2011.10.054
18.
Van Haren
,
S. W.
,
2011
, “
Testing DNS Capability of OpenFOAM and STAR-CCM+
,” Master's thesis,
Delft University of Technology
,
Delft, Netherlands
.
19.
Zhang
,
F.
,
Bonart
,
H.
,
Zirwes
,
T.
,
Habisreuther
,
P.
,
Bockhorn
,
H.
, and
Zarzalis
,
N.
,
2015
, “
Direct Numerical Simulation of Chemically Reacting Flows With the Public Domain Code OpenFOAM
,”
High Performance Computing in Science and Engineering ‘14
,
Springer
, Stuttgart, Germany, pp.
221
236
.
20.
Rasti
,
E.
,
Talebi
,
F.
, and
Mazaheri
,
K.
,
2017
, “
A DNS Investigation of Drag Reduction Phenomenon in Turbulent Flow of a Viscoelastic Fluid
,”
J. Solid Fluid Mech.
,
7
(
1
), pp.
255
274
.10.22044/jsfm.2017.926
21.
Vo
,
S.
,
Kronenburg
,
A.
,
Stein
,
O. T.
, and
Hawkes
,
E. R.
,
2016
, “
Direct Numerical Simulation of Non-Premixed Syngas Combustion Using OpenFOAM
,”
High Performance Computing in Science and Engineering’16
,
Springer
,
Cham
, Switzerland, pp.
245
257
.
22.
Komen
,
E.
,
Shams
,
A.
,
Camilo
,
L.
, and
Koren
,
B.
,
2014
, “
Quasi-DNS Capabilities of OpenFOAM for Different Mesh Types
,”
Comput. Fluids
,
96
, pp.
87
104
.10.1016/j.compfluid.2014.02.013
23.
Zheng
,
E. Z.
,
Rudman
,
M.
,
Singh
,
J.
, and
Kuang
,
S. B.
,
2019
, “
Direct Numerical Simulation of Turbulent Non-Newtonian Flow Using OpenFOAM
,”
Appl. Math. Modell.
,
72
, pp.
50
67
.10.1016/j.apm.2019.03.003
24.
Lakehal
,
D.
,
2018
, “
Highly-Resolved LES of Turbulent Convective Flow Along a PWR Rod Bundle
,”
Int. J. Heat Mass Transfer
,
122
, pp.
785
794
.10.1016/j.ijheatmasstransfer.2018.01.099
25.
Chang
,
D.
, and
Tavoularis
,
S.
,
2008
, “
Simulations of Turbulence, Heat Transfer and Mixing Across Narrow Gaps Between Rod-Bundle Subchannels
,”
Nucl. Eng. Des.
,
238
(
1
), pp.
109
123
.10.1016/j.nucengdes.2007.06.001
26.
Shams
,
A.
, and
Kwiatkowski
,
T.
,
2018
, “
Towards the Direct Numerical Simulation of a Closely-Spaced Bare Rod Bundle
,”
Ann. Nucl. Energy
,
121
, pp.
146
161
.10.1016/j.anucene.2018.07.022
27.
Ju
,
H.
,
Wang
,
M.
,
Chen
,
C.
,
Zhao
,
X.
,
Zhao
,
M.
,
Tian
,
W.
,
Su
,
G. H.
, and
Qiu
,
S.
,
2019
, “
Numerical Study on the Turbulent Mixing in Channel With Large Eddy Simulation (LES) Using Spectral Element Method
,”
Nucl. Eng. Des.
,
348
, pp.
169
176
.10.1016/j.nucengdes.2019.04.017
28.
Wang
,
Y.
,
Wang
,
M.
,
Ju
,
H.
,
Zhao
,
M.
,
Zhang
,
D.
,
Tian
,
W.
,
Liu
,
T.
,
Qiu
,
S.
, and
Su
,
G. H.
,
2020
, “
CFD Simulation of Flow and Heat Transfer Characteristics in a 5 × 5 Fuel Rod Bundles With Spacer Grids of Advanced PWR
,”
Nucl. Eng. Technol.
,
52
(
7
), pp.
1386
1395
.10.1016/j.net.2019.12.012
29.
Ju
,
H.
,
Yu
,
H.
,
Wang
,
M.
,
Zhao
,
M.
,
Tian
,
W.
,
Liu
,
T.
,
Su
,
G. H.
, and
Qiu
,
S.
,
2021
, “
LES and URANS Study on Turbulent Flow Through 3 × 3 Rod Bundle With Spacer Grid and Mixing Vanes Using Spectral Element Method
,”
Ann. Nucl. Energy
,
161
, p.
108474
.10.1016/j.anucene.2021.108474
30.
Ju
,
H.
,
Wang
,
M.
,
Wang
,
Y.
,
Zhao
,
M.
,
Tian
,
W.
,
Liu
,
T.
,
Su
,
G. H.
, and
Qiu
,
S.
,
2020
, “
Large Eddy Simulation on the Turbulent Mixing Phenomena in 3 × 3 Bare Tight Lattice Rod Bundle Using Spectral Element Method
,”
Nucl. Eng. Technol.
,
52
(
9
), pp.
1945
1954
.10.1016/j.net.2020.02.020
31.
Zhang
,
J.
,
Wang
,
M.
,
Chen
,
C.
,
Tian
,
W.
,
Qiu
,
S.
, and
Su
,
G. H.
,
2022
, “
CFD Investigation of the Cold Wall Effect on CHF in a 5 × 5 Rod Bundle for PWRs
,”
Nucl. Eng. Des.
,
387
, p.
111589
.10.1016/j.nucengdes.2021.111589
32.
Ninokata
,
H.
,
Atake
,
N.
,
Baglietto
,
E.
,
Misawa
,
T.
, and
Kano
,
T.
,
2004
, “
Direct Numerical Simulation of Turbulent Flows in a Subchannel of Tight Lattice Fuel Pin Bundles of Nuclear Reactors
,” Annual Report of the Earth Simulator Center, Kanagawa, Japan, pp.
293
296
.
33.
Popov
,
E. L.
,
Mecham
,
N. J.
, and
Bolotnov
,
I. A.
,
2022
, “
DNS Analysis of High Flux Isotope Reactor Subchannel
,”
Proceedings of the 2022 International Topical Meeting on Advances in Thermal Hydraulics (ATH'22)
, Anaheim, CA, June 12–16, pp.
54
64
.
34.
Baglietto
,
E.
,
Ninokata
,
H.
, and
Misawa
,
T.
,
2006
, “
CFD and DNS Methodologies Development for Fuel Bundle Simulations
,”
Nucl. Eng. Des.
,
236
(
14–16
), pp.
1503
1510
.10.1016/j.nucengdes.2006.03.045
35.
Brown
,
C. S.
, and
Bolotnov
,
I. A.
,
2016
, “
Spectral Analysis of Single- and Two-Phase Bubbly DNS in Different Geometries
,”
Nucl. Sci. Eng.
,
184
(
3
), pp.
363
376
.10.13182/NSE15-126
36.
Lai
,
J. K.
,
Busco
,
G.
,
Merzari
,
E.
, and
Hassan
,
Y. A.
,
2019
, “
Direct Numerical Simulation of the Flow in a Bare Rod Bundle at Different Prandtl Numbers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
12
), p.
121702
.10.1115/1.4044832
37.
Kraus
,
A.
,
Merzari
,
E.
,
Norddine
,
T.
,
Marin
,
O.
, and
Benhamadouche
,
S.
,
2021
, “
Direct Numerical Simulation of Fluid Flow in a 5 x 5 Square Rod Bundle
,”
Int. J. Heat Fluid Flow
,
90
, p.
108833
.10.1016/j.ijheatfluidflow.2021.108833
38.
Wang
,
H.
,
Bai
,
Y.
,
Zang
,
J.
, and
Huang
,
Y.
,
2022
, “
DNS Analysis of Flow and Heat Transfer of SCO2 in a Square Subchannel–Effect of Gap Width
,”
Int. J. Heat Mass Transfer
,
198
, p.
123439
.10.1016/j.ijheatmasstransfer.2022.123439
39.
Mathur
,
A.
,
Kwiatkowski
,
T.
,
Potempski
,
S.
, and
Komen
,
E. M. J.
,
2023
, “
Direct Numerical Simulation of Flow and Heat Transport in a Closely-Spaced Bare Rod Bundle
,”
Int. J. Heat Mass Transfer
,
211
, p.
124226
.10.1016/j.ijheatmasstransfer.2023.124226
40.
Fang
,
J.
, and
Bolotnov
,
I. A.
,
2017
, “
Bubble Tracking Analysis of PWR Two-Phase Flow Simulations Based on the Level Set Method
,”
Nucl. Eng. Des.
,
323
, pp.
68
77
.10.1016/j.nucengdes.2017.07.034
41.
Fang
,
J.
,
Rasquin
,
M.
, and
Bolotnov
,
I. A.
,
2017
, “
Interface Tracking Simulations of Bubbly Flows in PWR Relevant Geometries
,”
Nucl. Eng. Des.
,
312
, pp.
205
213
.10.1016/j.nucengdes.2016.07.002
42.
Cambareri
,
J. J.
,
Fang
,
J.
, and
Bolotnov
,
I. A.
,
2020
, “
Interface Capturing Simulations of Bubble Population Effects in PWR Subchannels
,”
Nucl. Eng. Des.
,
365
, p.
110709
.10.1016/j.nucengdes.2020.110709
43.
Feng
,
J.
, and
Bolotnov
,
I. A.
,
2017
, “
Evaluation of Bubble-Induced Turbulence Using Direct Numerical Simulation
,”
Int. J. Multiphase Flow
,
93
, pp.
92
107
.10.1016/j.ijmultiphaseflow.2017.04.003
44.
Feng
,
J.
, and
Bolotnov
,
I. A.
,
2018
, “
Effect of the Wall Presence on the Bubble Interfacial Forces in a Shear Flow Field
,”
Int. J. Multiphase Flow
,
99
, pp.
73
85
.10.1016/j.ijmultiphaseflow.2017.10.004
45.
Fang
,
J.
,
Cambareri
,
J. J.
,
Brown
,
C. S.
,
Feng
,
J.
,
Gouws
,
A.
,
Li
,
M.
, and
Bolotnov
,
I. A.
,
2018
, “
Direct Numerical Simulation of Reactor Two-Phase Flows Enabled by High-Performance Computing
,”
Nucl. Eng. Des.
,
330
, pp.
409
419
.10.1016/j.nucengdes.2018.02.024
46.
USNRC Technical Training Center,
2014
, “
USNRC Training Document—Entitled Reactor Concept Manual
,” USNRC Technical Training Center, Chattanooga, TN, Report No. LTR-14-0412-1.
47.
Pope
,
S. B.
,
2006
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
48.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.10.1017/S0022112087000892
49.
Barrett
,
R.
,
Berry
,
M.
,
Chan
,
T. F.
,
Demmel
,
J.
,
Donato
,
J. M.
,
Dongarra
,
J.
,
Eijkhout
,
V.
,
Pozo
,
R.
,
Romine
,
C.
, and
Van der Vorst
,
H.
,
1994
,
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods
, 2nd ed.,
Siam
,
Philadelphia, PA
.
50.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
51.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Center for Turbulence Research Proceedings of the Summer Program
, Stanford, CA, pp.
193
208
.https://web.stanford.edu/group/ctr/Summer/201306111537.pdf
52.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
53.
Liu
,
A.
,
Yang
,
B.
,
Han
,
B.
, and
Zhu
,
X.
,
2020
, “
Turbulent Mixing Models and Other Mixing Coefficients in Subchannel Codes—A Review Part A: Single Phase
,”
Nucl. Technol.
,
206
(
9
), pp.
1253
1295
.10.1080/00295450.2020.1792753
You do not currently have access to this content.