Safety analyses at the high flux isotope reactor (HFIR) are required to qualify irradiation of production targets containing neptunium dioxide/aluminum cermet (NpO2/Al) pellets for the production of plutonium-238 (238Pu). High heat generation rates (HGRs) due to a fertile starting material (237Np), low melting temperatures, and previously unstudied material irradiation behavior (i.e., swelling/densification, fission gas release) require a sophisticated set of steady-state thermal simulations in order to ensure sufficient safety margins. Experience gained from previous models for preliminary target designs is incorporated into a more comprehensive production target model designed to qualify a target for three cycles of irradiation and illuminate potential in-reactor behavior of the target.

References

1.
Hurt
,
C. J.
,
Freels
,
J. D.
,
Jain
,
P. K.
, and
Maldonado
,
G. M.
, “
Thermo-Mechanical Safety Analyses of Preliminary Design Experiments for 238Pu Production
,”
ASME J. Nucl. Eng. Radiat. Sci.
(in press).
2.
Hurt
,
C. J.
,
Freels
,
J. D.
,
Hobbs
,
R. W.
,
Jain
,
P. K.
, and
Maldonado
,
G. M.
,
2016
, “
Thermal Safety Analyses for the Production of Plutonium-238 at the High Flux Isotope Reactor
,” Oak Ridge National Laboratory, Oak Ridge, TN, Technical Report No.
ORNL/TM-2016/234
.
3.
Hurt
,
C. J.
,
Freels
,
J. D.
,
Griffin
,
F. P.
,
Chandler
,
D.
,
Hobbs
,
R. W.
, and
Wham
,
R. M.
,
2015
, “
Safety Analysis Models for the Irradiation of 237 Np Targets at the High Flux Isotope Reactor
,”
Nuclear and Emerging Technologies for Space (NETS)
,
Albuquerque, NM
,
Feb. 23–26
, pp.
20
29
.
4.
Freels
,
J. D.
,
Jain
,
P. K.
, and
Hobbs
,
R. W.
,
2012
, “
Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor Using COMSOL
,”
COMSOL Conference
,
Boston, MA
,
Oct. 3–5
.
5.
COMSOL Multiphysics (R), 2015, “
COMSOL Multiphysics® v. 5.2
,” COMSOL AB, Stockholm, Sweden.
6.
Hurt
,
C. J.
,
Wham
,
R. M.
,
Hobbs
,
R. W.
,
Owens
,
R. S.
,
Chandler
,
D.
,
Freels
,
J. D.
, and
Maldonado
,
G. M.
,
2014
, “
Plutonium-238 Production Target Design Studies
,”
Institute of Nuclear Materials Management 55th Annual Meeting
,
Atlanta, GA
,
July 20–24
, pp.
1111
1120
.
7.
Oak Ridge National Laboratory
,
2014
, “
Thermal and Hydraulic Design
,” HFIR Updated Safety Analysis Report, Revision 14,
Oak Ridge National Laboratory
, Oak Ridge, TN, Report No. ORNL/HFIR/USAR/2344.
8.
Wham
,
R. M.
,
Felker
,
L. K.
,
Collins
,
E. D.
,
Benker
,
D. E.
,
Owens
,
R. S.
,
Hobbs
,
R. W.
,
Chandler
,
D.
, and
Vedder
,
R. J.
, 2014, “
The 238Pu Supply Project
,”
The 19th Pacific Basin Nuclear Conference
,
Vancouver, BC
,
Aug. 24–28
, pp.
643
651
.
9.
Wham
,
R. M.
,
DePaoli
,
D. W.
, and
Hobbs
,
R. W.
,
2015
, “
Reestablishing the Supply of Plutonium-238
,”
Transactions of the American Nuclear Society
, Vol. 113,
Washington, D.C.
, pp.
205
206
.
10.
Griffin
,
F. P.
,
2017
, “
RELAP5 Consolidated Model of High Flux Isotope Reactor System
,” ORNL Report, Revision 2, Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/RRD/INT-154.
11.
Chandler
,
D.
,
2015
, “
Neutronics Simulations of 237 Np Targets to Support Safety-Basis and 238Pu Production Assessment Efforts at the High Flux Isotope Reactor
,”
Nuclear and Emerging Technologies for Space 2015 (NETS)
,
Albuquerque, NM
,
Feb. 23–26
, pp.
40
49
.
12.
Chandler
,
D.
,
2016
, “
Development of an Efficient Approach to Perform Neutronics Simulations for Plutonium-238 Production
,”
PHYSOR Conference
,
Sun Valley, Idaho
,
May 1–5
, pp.
913
927
.
13.
Madhusudana
,
C. V.
,
1995
,
Thermal Contact Conductance
,
Springer-Verlag
,
New York
.
14.
Ullman
,
A.
,
Acharya
,
R.
, and
Olander
,
D. R.
,
1974
, “
Thermal Accommodation Coefficients of Inert Gases on Stainless Steel and UO2
,”
J. Nucl. Mater.
,
51
(
2
), pp.
277
279
.
15.
Thomas
,
L. B.
, and
Loyalka
,
S. K.
,
1982
, “
Determination of Thermal Accommodation Coefficients of Inert Gases on a Surface of Vitreous UO2 at ∼35 °C
,”
Nucl. Technol.
,
59
(
1
), pp.
63
69
.
16.
Hall
,
R. O. A.
, and
Martin
,
D. G.
,
1987
, “
The Evaluation of Temperature Jump Distances and Thermal Accommodation Coefficients From Measurements of the Thermal Conductivity of UO2 Packed Sphere Beds
,”
Nucl. Eng. Des.
,
101
(
3
), pp.
249
258
.
17.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Ganic
,
E. N.
,
1985
,
Handbook of Heat Transfer Fundamentals
, 2nd ed.,
McGraw-Hill Book
,
New York
.
18.
Bondi
,
A.
,
1964
, “
Van Der Waals Volumes and Radii
,”
J. Phys. Chem.
,
68
(
3
), p.
441
.
19.
Van Atta
,
C. M.
,
1965
,
Vacuum Science and Engineering
, 1st ed.,
McGraw-Hill
,
New York
, pp.
440
441
.
20.
Hirschfelder
,
J.
,
Curtiss
,
C.
, and
Bird
,
R.
,
1954
,
Molecular Theory of Gases and Liquids
, 1st ed.,
Wiley
,
New York
, p.
1110
.
21.
Brokaw
,
R. S.
,
1958
, “
Approximate Formulas for Viscosity and Thermal Conductivity for Gas Mixtures
,”
J. Chem. Phys.
,
29
(
2
), pp. 391–397.
22.
Saxena, S. C.,
1957
, “
Thermal Conductivity of Binary And Ternary Mixtures of Helium, Argon, and Xenon
,” Indian J. Phys, Vol. 31, pp. 597-606.
23.
Hoffman
,
G. L.
,
Rest
,
J.
, and
Snelgrove
,
J. L.
,
1996
, “
Irradiation Behavior of Uranium Oxide—Aluminum Dispersion Fuel
,”
International Meeting for Reduced Enrichment for Research and Test Reactors
,
Seoul, Korea
,
Oct. 7–10
.
24.
Assmann
,
H.
, and
Stehle
,
H.
,
1978
, “
Thermal and in-Reactor Densification of UO2: Mechanisms and Experimental Results
,”
Nucl. Eng. Des.
,
48
(
1
), pp.
49
67
.
25.
Yanagisawa
,
K.
,
1986
, “
Fuel Densification and Swelling: Relationship Between Burn-Up Induced Axial and Radial Fuel Dimensional Changes
,”
Nucl. Eng. Des.
,
96
, pp.
11
20
.
26.
Meyer
,
R. O.
,
1976
, “
The Analysis of Fuel Densification—Aluminum Dispersion Fuel
,” Office of Nuclear Regulatory Commission, Washington, D.C., Report No. NUREG-0085.
27.
Griffin
,
F. P.
,
2013
, “
RELAP5 Transient Analyses of Pu-238 Fully-Loaded Targets
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/TM-2016/234.
28.
Howard
,
R. H.
,
Miller
,
J. H.
,
Owens
,
R. S.
,
Hemrick
,
J. G.
,
Erdman
,
D. L.
, III
,
Schmidlin
,
J. E.
, and
Hawkins
,
C. S.
,
2014
, “
Mechanical and Thermal Properties for 237 Np Pellets to Support 238Pu Production
,”
The Nuclear Materials Conference—NuMat2014
,
Clearwater, FL
,
Oct. 27–30
.
29.
Marquardt
,
E. D.
,
Le
,
J. P.
, and
Radebaugh
,
R.
,
2000
, “
Cryogenics Material Properties Database
,”
11th International Cryocooler Conference
,
Keystone, CO
,
June 20–22
, pp.
681
687
.
30.
U.S. Department of Defense
,
1998
, “
Metallic Materials and Elements for Aerospace Vehicle Structures, Department of Defense
,”
Military Handbook
, Wright-Patterson AFB, OH.
31.
ASM International
,
1992
,
ASM Handbook
, Vol.
2
,
ASM International
,
Novelty, OH
.
32.
Lalpoor
,
M.
,
Eskin
,
D. G.
, and
Katgerman
,
L.
,
2009
, “
Cold-Cracking Assessment in AA7050 Billets During Direct-Chill Casting by Thermomechanical Simulation of Residual Thermal Stresses and Application of Fracture Mechanics
,”
Metall. Mater. Trans. A
,
40A
(
13
), pp.
3304
3313
.
33.
Sharma
,
S. C.
,
2000
, “
Effect of Albite Particles on the Coefficient of Thermal Expansion Behavior of the Al6061 Alloy Composites
,”
Metall. Mater. Trans. A
,
31A
(
3
), pp.
773
780
.
34.
Sakai
,
K.
,
Matsumuro
,
A.
, and
Senoo
,
M.
,
1996
, “
Elastic Moduli of Al–Li Alloys Treated at a High Pressure of 5.4 GPa
,”
J. Mater. Sci.
,
31
(
12
), p.
3309
.
35.
Naimon
,
E. R.
,
Ledbetter
,
H. M.
, and
Weston
,
W. F.
,
1975
, “
Low-Temperature Elastic Properties of Four Wrought and Annealed Aluminium Alloys
,”
J. Mater. Sci.
,
10
(
8
), p.
1309
.
36.
McLellan
,
R. B.
, and
Ishikawa
,
T. J.
,
1987
, “
The Elastic Properties of Aluminum at High Temperatures
,”
J. Phys. Chem. Solids
,
48
(
7
), p.
603
.
37.
Stokes
,
H. J.
,
1960
, “
Computer for the Identification of Charged Particles
,”
Sci. Instrum.
,
37
(
7
), p.
768
.
38.
MatWeb, 1999,
Material Property Data
,” MatWeb, Blacksburg, VA, accessed Sept. 11, 2018, http://www.matweb.com
39.
Ho
,
C. Y.
,
Powell
,
R. W.
, and
Liley
,
P. E.
,
1972
, “
Thermal Conductivity of the Elements
,”
J. Phys. Chem. Ref. Data
,
1
(
2
), p.
279
.
40.
McBride
,
B. J.
,
Gordon
,
S.
, and
Reno
,
M. A.
,
1993
, “
Thermodynamic Data for Fifty Reference Elements
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No.
NASA/TP-3287
.https://ntrs.nasa.gov/search.jsp?R=20010021116
41.
Ramires
,
M. L. V.
,
Nieto de Castro
,
C. A.
,
Nagasaka
,
Y.
,
Nagashima
,
A.
,
Assael
,
M. J.
, and
Wakeham
,
W. A.
,
1995
, “
Standard Reference Data for the Thermal Conductivity of Water
,”
J. Phys. Chem. Ref. Data
,
24
(
3
), p.
1377
.
42.
Lide
,
D. R.
, ed.,
1998
,
CRC Handbook of Chemistry and Physics
, 79th ed., CRC Press, Boca Raton, FL, pp.
6
3
.
43.
Pankratz
,
L. B.
,
1982
, “
Thermodynamic Properties of Halides
,” U.S. Bureau of Mines Bulletin 672.
44.
Kestin
,
J.
,
Sokolov
,
M.
, and
Wakeham
,
W. A.
,
1978
, “
Viscosity of Liquid Water in the Range −8 °C to 150 °C
,”
J. Phys. Chem. Ref. Data
,
7
(
3
), p.
941
.
45.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley, John Wiley & Sons, Inc.
,
Hoboken, NJ
.
46.
Griess
,
J. C.
,
Savage
,
H. C.
, and
English
,
J. L.
, 1961, “
Effect of Heat Flux on the Corrosion of Aluminum by Water—Part III: Final 49 Report on Tests Relative to the High-Flux Isotope Reactor
,” Oak Ridge National Laboratory, Oak Ridge, TN, Technical Report No. ORNL-3230.
47.
Farrell
,
K.
, and
King
,
R. T.
,
1979
, “
Tensile Properties of Neutron-Irradiated 6061 Aluminum Alloy in Annealed and Precipitation-Hardened Conditions
,” American Society for Testing and Materials, West Conshohocken, PA, Standard No.
ASTM STP 683
.
48.
Hobbs
,
R. W.
,
Chandler
,
D.
,
Hurt
,
C. J.
,
Freels
,
J. D.
,
Owens
,
R. S.
, and
Bryan
,
C.
,
2015
, “
Potential Improvements to 238Pu Production Targets for the High Flux Isotope Reactor
,”
ANS Winter Meeting
,
Washington, DC
,
Nov. 8–12
, pp.
207
210
.
You do not currently have access to this content.