Abstract

The paper describes a modified version of the tempa-sc computer program designed to calculate temperature fields in bundles of rods cooled by a supercritical pressure (SCP) fluid. This version of the program is based on the subchannel method that was used in the tempa-1f program, developed earlier in the OKB “GIDROPRESS” for calculating heat and mass transfer in the core of VVER-type reactors cooled by single-phase water at subcritical pressure. As the relations that close the system of equations of mass, momentum, and energy conservation, the new version of the program includes correlations for calculating heat transfer and friction resistance, taking into account the strong dependence of the properties of the coolant on temperature and pressure. In particular, the use of the universal calculation model of heat transfer, developed by the authors of this paper, allows us to perform calculations in a wide range of flow parameters of various fluids, including the modes of normal, improved and deteriorated heat transfer. The results of tests of the tempa-sc program are presented in comparison with the available experimental data for water and modeling fluids (carbon dioxide, freons R-12 and R-134a) at SCPs, as well as with the published data of calculations by using similar subchannel programs (cobra-sc, assert-pv) and CFD codes. A qualitative agreement between the calculated and experimental data is shown.

References

1.
GIF (Generation IV International Forum),
2014
, “
Technology Roadmap Update for Generation IV Nuclear Energy Systems—January
,”
OECD Nuclear Energy Agency
,
Paris, France
, p.
64
.
2.
Pioro
,
I.
,
2021
, “
Current Status of Nuclear Power in the World Including Latest Developments on SMRs
,”
Tenth International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-10)
, Prague, Czech Republic, Mar. 15–18, ISSCWR10-037, pp.
1
2
.
3.
Zang
,
J.
, and
Huang
,
Y.
,
2021
, “
Some Thoughts on the Small Modular Supercritical Water-Cooled Reactors
,”
Tenth International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-10)
, Prague, Czech Republic, Mar. 15–18,ISSCWR10-020, pp.
1
6
.
4.
MacDonald
,
P.
,
Buongiorno
,
J.
,
Sterbentz
,
J. W.
,
Davis
,
C.
, and
Witt
,
R.
,
2005
, “
Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production
,” Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Award Number DE-FG07-02SF22533, Final Report, 12th Quarterly Report, January.
5.
Liu
,
X. J.
,
Yang
,
T.
, and
Cheng
,
X.
,
2013
, “
Development and Assessment of a Sub-Channel Code Applicable for Trans-Critical Transient of SCWR
,”
Nucl. Eng. Des.
,
262
, pp.
499
509
.10.1016/j.nucengdes.2013.05.026
6.
Rao
,
Y. F.
,
Onder
,
E. N.
, and
Podila
,
K.
,
2016
, “
Assessment of Subchannel Code ASSERT-PV for Supercritical Applications
,”
J. Supercrit. Fluids
,
117
, pp.
164
171
.10.1016/j.supflu.2016.06.016
7.
Leung
,
L. K. H.
,
Rao
,
Y.
, and
Podila
,
K.
,
2016
, “
Assessment of Computational Tools in Support of Heat-Transfer Correlation Development for Fuel Assembly of Canadian Supercritical Water-Cooled Reactor
,”
J. Nucl. Eng. Rad. Sci.
,
2
, p.
011006
.10.1115/1.4031283
8.
Churkin
,
A. N.
,
Yagov
,
P. V.
,
Mokhov
,
V. A.
, and
Shchekin
,
I. G.
,
2009
, “
Computer Code TEMPA-SC: Simulation of Thermal-Hydraulic Processes in the Core of VVER-SCP Reactor
,”
Fourth International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-4)
, Heidelberg, Germany, Mar. 8–11, pp.
1
10
.
9.
Roache
,
P. J.
,
1976
,
Computational Fluid Dynamics
,
Hermosa Publishers
,
Albuquerque
,
446
p.
10.
Deev
,
V. I.
,
Kharitonov
,
V. S.
,
Baisov
,
A. M.
, and
Churkin
,
A. N.
,
2018
, “
Universal Dependencies for the Description of Heat Transfer Regimes in Turbulent Flow of Supercritical Fluids in Channels of Various Geometries
,”
J. Supercrit. Fluids
,
64
(
2
), pp.
142
150
.10.1016/j.supflu.2018.01.019
11.
Deev
,
V. I.
,
Kharitonov
,
V. S.
,
Baisov
,
A. M.
, and
Churkin
,
A. N.
,
2020
, “
A New Approach to Generalization of Experimental Data on Heat Transfer to Fluids in Supercritical Region
,”
J. Nucl. Eng. Rad. Sci.
,
6
, p.
021109
.10.1115/1.4046112
12.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
13.
Richards
,
G.
,
Harvel
,
G. D.
,
Pioro
,
I. L.
,
Shelegov
,
A. S.
, and
Kirillov
,
P. L.
,
2013
, “
Heat Transfer Profiles of a Vertical, Bare, 7-Element Bundle Cooled With Supercritical Freon R-12
,”
Nucl. Eng. Des.
,
264
, pp.
246
256
.10.1016/j.nucengdes.2013.02.019
14.
Li
,
H.
,
Zhao
,
M.
,
Gu
,
H.
,
Lu
,
D.
,
Wang
,
F.
,
Zhang
,
J.
,
Zhang
,
Y.
, and
Yang
,
J.
,
2013
, “
Heat Transfer Research on Supercritical Water Flow in 2 × 2 Bundles
,”
Sixth International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-6)
, Shenzhen, Guangdong, China, Mar. 3–7, ISSCWR6-13055, pp.
1
11
.
15.
Zhao
,
M.
,
Li
,
H.
,
Yang
,
J.
,
Gu
,
H.
, and
Cheng
,
X.
, “
Experimental Study on Heat Transfer to Supercritical Water Flowing Through Circle Tubes and 2 × 2 Rod Bundles
,”
Sixth International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-6)
, Shenzhen, Guangdong, China, Mar. 3–7, ISSCWR6-13107, pp.
1
24
.
16.
Wang
,
H.
,
Bi
,
Q. C.
,
Wang
,
L.
,
Lv
,
H.
, and
Leung
,
L. K. H.
,
2014
, “
Experimental Investigation of Heat Transfer From a 2 × 2 Rod Bundle to Supercritical Pressure Water
,”
Nucl. Eng. Des.
,
275
, pp.
205
218
.10.1016/j.nucengdes.2014.04.036
17.
Wang
,
H.
,
Bi
,
Q.
,
Ni
,
Z.
,
Lv
,
H.
, and
Gui
,
M.
,
2015
, “
Experiments of Heat Transfer to Supercritical Water in a 2 × 2 Rod Bundle With Wire-Wrapped Spacers
,”
Seventh International Symposium on Supercritical Water Cooled Reactors (ISSCWR-7)
, Helsinki, Finland, Mar. 15–18, ISSCWR7-2060, pp.
1
13
.
18.
Wang
,
H.
,
Bi
,
Q. C.
, and
Leung
,
L. K. H.
,
2016
, “
Heat Transfer From a 2 × 2 Wire-Wrapped Rod Bundle to Supercritical Pressure Water
,”
Int. J. Heat Mass Transf.
,
97
, pp.
486
501
.10.1016/j.ijheatmasstransfer.2016.02.036
19.
Eter
,
A.
,
Groeneveld
,
D.
, and
Tavoularis
,
S.
,
2015
, “
Experiments on Heat Transfer in Rod-Bundle Flows of CO2 at Supercritical Pressures
,”
Seventh International Symposium on Supercritical Water Cooled Reactors (ISSCWR-7)
, Helsinki, Finland, Mar. 15–18, ISSCWR7-2070, pp.
1
17
.
20.
Eter
,
A.
,
Groeneveld
,
D.
, and
Tavoularis
,
S.
,
2016
, “
An Experimental Investigation of Supercritical Heat Transfer in a Three-Rod Bundle Equipped With Wire-Wrap and Grid Spacers and Cooled by Carbon Dioxide
,”
Nucl. Eng. Des.
,
303
, pp.
173
191
.10.1016/j.nucengdes.2016.04.002
21.
Chen
,
J.
,
Gu
,
H.
,
Xiong
,
Z.
, and
Liu
,
D.
,
2018
, “
Experimental Investigation on Heat Transfer Behavior in a Tight 19 Rod Bundle Cooled With Supercritical R134a
,”
Ann. Nucl. Energy
,
115
, pp.
393
402
.10.1016/j.anucene.2018.02.010
22.
Chen
,
J.
,
Xiong
,
Z.
,
Xiao
,
Y.
, and
Gu
,
H.
,
2019
, “
Experimental Study on the Grid-Enhanced Heat Transfer at Supercritical Pressures in Rod Bundle
,”
Appl. Therm. Eng.
,
156
, pp.
299
309
.10.1016/j.applthermaleng.2019.04.073
23.
Chen
,
S.
,
Xiao
,
Y.
, and
Gu
,
H.
,
2019
, “
Experimental Study on Heat Transfer to Supercritical and Near-Critical Water in a Three-Rod Bundle With Spacer Grids
,”
Ninth International Symposium on Supercritical Water Cooled Reactors (ISSCWR-9)
, Vancouver, British Columbia, Canada, Mar. 10–14, ISSCWR9-34, pp.
1
15
.
24.
Yang
,
T.
,
Liu
,
X.
,
Yang
,
J.
,
Gu
,
H.
, and
Cheng
,
X.
,
2013
, “
Development and Validation of a Subchannel Code Applicable for SCWR
,”
Sixth International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-6)
, Shenzhen, Guangdong, China, Mar. 3–7, ISSCWR6-13020, pp.
1
17
.
25.
Rohde
,
M.
,
Peeters
,
J. W. R.
,
Pucciarelli
,
A.
,
Kiss
,
A.
,
Rao
,
Y. F.
,
Onder
,
E. N.
,
Muehlbauer
,
P.
,
Batta
,
A.
,
Hartig
,
M.
,
Chatoorgoon
,
V.
,
Thiele
,
R.
,
Chang
,
D.
,
Tavoularis
,
S.
,
Novog
,
D.
,
McClure
,
D.
,
Gradecka
,
M.
, and
Takase
,
K.
,
2016
, “
A Blind, Numerical Benchmark Study on Supercritical Water Heat Transfer Experiments in a 7-Rod Bundle
,”
J. Nucl. Eng. Rad. Sci.
,
2
, p.
021012
.10.1115/1.4031949
26.
Nava-Dominguez
,
A.
, and
Leung
,
L.
,
2019
, “
Benchmarking the Subchannel ASSERT-PV Code Using the University of Wisconsin-Madison Supercritical Fluid Experiments
,”
Ninth International Symposium on Supercritical Water Cooled Reactors (ISSCWR-9)
, Vancouver, British Columbia, Canada, Mar. 10–14, ISSCWR9-33, pp.
1
21
.
You do not currently have access to this content.