The vortex-induced oscillation of TLP tether is investigated in the vicinity of lock-in condition. The vortex shedding is caused purely due to current, which may vary across the depth of the sea. The vibration of TLP is modeled as a SDOF problem by assuming that the first mode response of the tether dominates the motion. Nonlinearity in the equation of motion is produced due to the relative velocity squared drag force. In order to trace different branches of the response curve and investigate different instability phenomena that may exist, an arc-length continuation technique along with the incremental harmonic balance method (IHBC) is employed. A procedure for treating the nonlinear term using distribution theory is presented so that the equation of motion is transformed to a form amenable to the application of IHBC. The stability of the solution is investigated by the Floquet theory using Hsu’s scheme.

1.
Natvig
,
B. J.
, and
Pendered
,
J. W.
, 1977, “
Nonlinear Motion Response of Floating Structures to Wave Excitation
,”
Proceedings of Ninth Annual Offshore Technology Conference
(OTC-2796), p.
1
.
2.
Johnson
,
C. P.
,
Mekha
,
B. B.
, and
Roesset
,
J. M.
, 1993, “
Simplified Modeling for the Nonlinear Response of Tension Leg Platforms in Deep Water
,”
Proceedings of the Third International Offshore and Polar Engineering Conference
,
Singapore
, pp.
326
333
.
3.
Dong
,
Y.
, and
Lou
,
J. Y. K.
, 1991, “
Vortex-induced Nonlinear Oscillation of Tension Leg Platform Tethers
,”
Ocean Eng.
0029-8018,
18
(
5
), pp.
451
464
.
4.
Friedmann
,
P.
,
Hammond
,
C. E.
, and
Woo
,
T.-H.
, 1977, “
Efficient Numerical Treatment of Periodic Systems With Application to Stability Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
11
, pp.
1117
1136
.
5.
Chua
,
L. O.
, and
Ushida
,
A.
, 1981, “
Algorithms for Computing Almost Periodic Steady-State Response of Nonlinear Systems to Multiple Input Frequencies
,”
IEEE Circuits Syst. Mag.
1531-636X,
CAS-28
, pp.
953
971
.
6.
Burton
,
T. D.
, 1982, “
Nonlinear Oscillator Limit Cycle Analysis Using a Finite Transformation Approach
,”
Int. J. Non-Linear Mech.
0020-7462,
17
, pp.
7
19
.
7.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1995,
Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods
,
Wiley
,
New York
.
8.
Sinha
,
S. C.
,
Bibb
,
J. S.
, and
Pandiyan
,
R.
, 1996, “
Liapunov–Floquet Transformation: Computation and Applications to Periodic Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
209
219
.
9.
Bishop
,
S. R.
, and
Virgin
,
L. N.
, 1988, “
The Onset of Chaotic Motions of a Moored Semi-submersible
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
110
, pp.
205
209
.
10.
Gottlieb
,
O.
, and
Yim
,
S. C. S.
, 1992, “
Nonlinear Oscillations, Bifurcations and Chaos in a Multi-Point Mooring System with a Geometric Nonlinearity
,”
Appl. Ocean. Res.
0141-1187,
14
, pp.
241
257
.
11.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
, 1982, “
A Variable Parameter Incrementation Method for Dynamic Instability of Linear and Nonlinear Elastic Systems
,”
ASME J. Appl. Mech.
0021-8936,
49
, pp.
849
853
.
12.
Pierre
,
C.
,
Ferri
,
A. A.
, and
Dowell
,
E. H.
, 1985, “
Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
958
964
.
13.
Lau
,
S. L.
, and
Yuen
,
S. W.
, 1993, “
Solution Diagram of Nonlinear Dynamic Systems by the IHB Method
,”
J. Sound Vib.
0022-460X,
167
(
2
), pp.
303
316
.
14.
Leung
,
A. Y. T.
, and
Chui
,
S. K.
, 1995, “
Nonlinear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonic Balance Method
,”
J. Sound Vib.
0022-460X,
181
(
4
), pp.
619
633
.
15.
Raghothama
,
A.
, and
Narayanan
,
S.
, 2000, “
Bifurcations and Chaos of an Articulated Loading Platform With Piecewise Nonlinear Stiffness Using the Incremental Harmonic Balance Method
,”
Ocean Eng.
0029-8018,
27
, pp.
1087
1107
.
16.
Xu
,
L.
,
Lu
,
M. W.
, and
Cao
,
Q.
, 2002, “
Nonlinear Vibrations of Dynamical Systems With a General Form of Piecewise-Linear Viscous Damping by Incremental Harmonic Balance Method
,”
Phys. Lett. A
0375-9601,
301
, pp.
65
73
.
17.
Thompson
,
J. M. T.
,
Bokian
,
A. R.
, and
Ghaffari
,
R.
, 1984, “
Subharmonic and Chaotic Motions of Compliant Offshore Structure and Articulated Mooring Towers
,”
ASME J. Energy Resour. Technol.
0195-0738,
106
, pp.
191
198
.
18.
Sharma
,
S. D.
,
Jiang
,
T.
, and
Schellin
,
T. E.
, 1988, “
Dynamic Instability and Chaotic Motions of a Single-Point Moored Tanker
,”
17th Symposium on Naval Hydrodynamics
,
The Hague
, pp.
543
563
.
19.
Dong
,
Y.
,
Xie
,
G.
, and
Lou
,
J. Y. K.
, 1992, “
Stability of Vortex-Induced Oscillations of Tension Leg Platform Tethers
,”
Ocean Eng.
0029-8018,
19
(
6
), pp.
555
571
.
20.
Seydel
,
R.
, 1995,
Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.