Free-surface flows occur in several problems in hydrodynamics, such as fuel or water sloshing in tanks, waves breaking in ships, offshore platforms, harbors, and coastal areas. The computation of such highly nonlinear flows is challenging, since free-surfaces commonly present merging, fragmentation, and breaking parts, leading to the use of interface-capturing Eulerian approaches. In such methods the surface between two fluids is captured by the use of a marking function, which is transported in a flow field. In this work we discuss computational techniques for efficient implementation of 3D incompressible streamline-upwind/Petrov–Galerkin (SUPG)/pressure-stabilizing/Petrov–Galerkin finite element methods to cope with free-surface problems with the volume-of-fluid method (Elias, and Coutinho, 2007, “Stabilized Edge-Based Finite Element Simulation of Free-Surface Flows,” Int. J. Numer. Methods Fluids, 54, pp. 965–993). The pure advection equation for the scalar marking function was solved by a fully implicit parallel edge-based SUPG finite element formulation. Global mass conservation is enforced, adding or removing mass proportionally to the absolute value of the normal velocity of the interface. We introduce parallel edge-based data structures, a parallel dynamic deactivation algorithm to solve the marking function equation only in a small region around the interface. The implementation is targeted to distributed memory systems with cache-based processors. The performance and accuracy of the proposed solution method is tested in the simulation of the water impact on a square cylinder and in the propagation of a solitary wave.

1.
Tezduyar
,
T. E.
, and
Osawa
,
Y.
, 2000, “
Finite Element Stabilization Parameters Computed From Element Matrices and Vectors
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
411
430
.
2.
Tezduyar
,
T. E.
,
Mittal
,
S.
,
Ray
,
S. E.
, and
Shih
,
R.
, 1992, “
Incompressible Flow Computations With Stabilized Bilinear and Linear Equal-Order-Interpolation Velocity-Pressure Elements
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
95
, pp.
221
242
.
3.
Tezduyar
,
T. E.
, 2001, “
Finite Element Methods for Flow Problems With Moving Boundaries and Interfaces
,”
Arch. Comput. Methods Eng.
1134-3060,
8
, pp.
83
130
.
4.
Koshizuka
,
S.
,
Tamako
,
H.
, and
Oka
,
Y.
, 1995, “
A Particle Method for Incompressible Viscous Flow With Fluid Fragmentation
,”
Comput. Fluid Dyn. J.
0918-6654,
4
, pp.
29
46
.
5.
Violeau
,
D.
, and
Issa
,
R.
, 2007, “
Numerical Modelling of Complex Turbulent Free-Surface Flows With the SPH Method: An Overview
,”
Int. J. Numer. Methods Fluids
0271-2091,
53
, pp.
277
304
.
6.
Del Pin
,
F.
,
Idelsohn
,
S.
,
Oñate
,
E.
, and
Aubry
,
R.
, 2007, “
The ALE/Lagrangian Particle Finite Element Method: A New Approach to Computation of Free-Surface Flows and Fluid-Object Interactions
,”
Comput. Fluids
0045-7930,
36
, pp.
27
38
.
7.
Takizawa
,
K.
,
Yabe
,
T.
,
Tsugawa
,
Y.
,
Tezduyar
,
T. E.
, and
Mizoe
,
H.
, 2007, “
Computation of Free-Surface Flows and Fluid-Object Interactions With the CIP Method Based on Adaptive Meshless Soroban Grids
,”
Comput. Mech.
0178-7675,
40
, pp.
167
183
.
8.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Methods for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
9.
Tezduyar
,
T. E.
,
Aliabadi
,
S.
, and
Behr
,
M.
, 1997, “
Enhanced-Discretization Interface-Capturing Technique
,”
Proceedings of the ISAC‘97 High Performance Computing on Multiphase Flows
,
Y.
Matsumoto
and
A.
Prosperetti
, eds., Vol.
1–6
.
10.
Lohner
,
R.
,
Yang
,
C.
, and
Onate
,
E.
, 2006, “
On the Simulation of Flows With Violent Free-Surface Motion
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
5597
5620
.
11.
Sethian
,
J. A.
, 1999,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
,
Cambridge University Press
,
Cambridge, UK
.
12.
Elias
,
R. N.
, and
Coutinho
,
A. L. G. A.
, 2007, “
Stabilized Edge-Based Finite Element Simulation of Free-Surface Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
54
, pp.
965
993
.
13.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments With Primitive Equations, Part I: The Basic Experiment
,”
Mon. Weather Rev.
0027-0644,
91
, pp.
99
152
.
14.
Galeão
,
A. C.
, and
do Carmo
,
E. G. D.
, 1988, “
A Consistent Approximate Upwind Petrov-Galerkin Method for Convection-Dominated Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
68
, pp.
83
95
.
15.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
, 1982, “
Streamline-Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
32
, pp.
199
259
.
16.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Tezduyar
,
T. E.
, and
Hughes
,
T. J. R.
, 2007, “
YZβ Discontinuity Capturing for Advection-Dominated Processes With Application to Arterial Drug Delivery
,”
Int. J. Numer. Methods Fluids
0271-2091,
54
, pp.
593
608
.
17.
Franca
,
L. P.
, and
Frey
,
S. L.
, 1992, “
Stabilized Finite Element Methods: II. The Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
99
, pp.
209
233
.
18.
Elias
,
R. N.
,
Martins
,
M. A. D.
, and
Coutinho
,
A. L. G. A.
, 2006, “
Parallel Edge-Based Solution of Viscoplastic Flows With the SUPG/PSPG Formulation
,”
Comput. Mech.
0178-7675,
38
, pp.
365
381
.
19.
Valli
,
A. M. P.
,
Carey
,
G. F.
, and
Coutinho
,
A. L. G. A.
, 2005, “
Control Strategies for Timestep Selection in FE Simulation of Incompressible Flows and Coupled Reaction-Convection-Diffusion Processes
,”
Int. J. Numer. Methods Fluids
0271-2091,
47
, pp.
201
231
.
20.
Elias
,
R. N.
,
Coutinho
,
A. L. G. A.
, and
Martins
,
M. A. D.
, 2006, “
Inexact Newton-Type Methods for the Solution of Steady Incompressible Viscoplastic Flows With the SUPG/PSPG Finite Element Formulation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
3145
3167
.
21.
Coutinho
,
A. L. G. A.
,
Martins
,
M. A. D.
,
Sydenstricker
,
R. M.
, and
Elias
,
R. N.
, 2006, “
Performance Comparison of Data-Reordering Algorithms for Sparse Matrix-Vector Multiplication in Edge-Based Unstructured Grid Computations
,”
Int. J. Numer. Methods Eng.
0029-5981,
66
, pp.
431
460
.
22.
Martins
,
M. A. D.
,
Elias
,
R. N.
, and
Coutinho
,
A. L. G. A.
, 2007, “
EdgePack: A Parallel Vertex and Node Reordering Package for Optimizing Edge-Based Computations in Unstructured Grids
,”
Lect. Notes Comput. Sci.
0302-9743,
4395
, pp.
292
304
.
23.
Elias
,
R. N.
,
Martins
,
M. A. D.
, and
Coutinho
,
A. L. G. A.
, 2005, “
Parallel Edge-Based Inexact Newton Solution of Steady Incompressible 3D Navier-Stokes Equations
,”
Lect. Notes Comput. Sci.
0302-9743,
3648
, pp.
1237
1245
.
24.
Karypis
,
G.
, and
Kumar
,
V.
, 1998, “
METIS, A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices
,” University of Minnesota, Minneapolis, http://glaros.dtc.umn.edu/gkhome/views/metishttp://glaros.dtc.umn.edu/gkhome/views/metis.
25.
Lohner
,
R.
,
Yang
,
C.
, and
Onate
,
E.
, 2006, “
On the Simulation of Flows With Violent Free-Surface Motion
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
5597
5620
.
26.
Lohner
,
R.
, and
Camelli
,
F.
, 2004, “
Dynamic Deactivation for Advection-Dominated Contaminant Transport
,”
Commun. Numer. Methods Eng.
1069-8299,
20
, pp.
639
646
.
27.
Radovitzky
,
R.
, and
Ortiz
,
M.
, 1998, “
Lagrangian Finite Element Analysis of Newtonian Fluid Flows
,”
Int. J. Numer. Methods Eng.
0029-5981,
43
, pp.
607
619
.
28.
Laitone
,
E. V.
, 1960, “
The Second Approximation to Cnoidal and Solitary Waves
,”
J. Fluid Mech.
0022-1120,
9
, pp.
430
444
.
29.
Gómez-Gesteira
,
M.
, and
Dalrymple
,
R. A.
, 2004, “
Using a Three-Dimensional Smoothed Particle Hydrodynamics Method for Wave Impact on a Tall Structure
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X,
130
, pp.
63
69
.
30.
Wu
,
T. R.
, 2004, “
A Numerical Study of Three-Dimensional Breaking Waves and Turbulence Effects
,” Ph.D. thesis, Cornell University, Ithaca, New York.
31.
Raad
,
P.
, “Mitigation of Local Tsunami Effects,” http://engr.smu.edu/waves/project.htmlhttp://engr.smu.edu/waves/project.html.
You do not currently have access to this content.