This paper studies the static stability of metal cones subjected to combined, simultaneous action of the external pressure and axial compression. Cones are relatively thick; hence, their buckling performance remains within the elastic-plastic range. The literature review shows that there are very few results within this range and none on combined stability. The current paper aims to fill this gap. Combined stability plot, sometimes called interactive stability plot, is obtained for mild steel models. Most attention is given to buckling caused by a single type of loading, i.e., by hydrostatic external pressure and by axial compression. Asymmetric bifurcation bucklings, collapse load in addition to the first yield pressure and first yield force, are computed using two independent proprietory codes in order to compare predictions given by them. Finally, selected cone configurations are used to verify numerical findings. To this end four cones were computer numerically controlled-machined from a solid steel billet of 252 mm in diameter. All cones had integral top and bottom flanges in order to mimic realistic boundary conditions. Computed predictions of buckling loads, caused by external hydrostatic pressure, were close to the experimental values. But similar comparisons for axially compressed cones are not so good. Possible reasons for this disparity are discussed in the paper.

1.
Seide
,
P.
, 1956, “
Axisymmetrical Buckling of Circular Cones Under Axial Compression
,”
ASME J. Appl. Mech.
0021-8936,
23
(
4
), pp.
625
628
.
2.
Seide
,
P.
, 1962, “
On the Buckling of Truncated Conical Shells in Torsion
,”
ASME J. Appl. Mech.
0021-8936,
29
(
2
), pp.
321
328
.
3.
Yamaki
,
N.
, and
Tani
,
J.
, 1969, “
Buckling of Truncated Conical Shells Under Torsion
,”
Z. Angew. Math. Mech.
0044-2267,
49
(
8
), pp.
471
480
.
4.
Nash
,
W. A.
, 1995,
Hydrostatically Loaded Structures
,
Pergamon
,
Oxford
, pp.
79
111
.
5.
Singer
,
J.
, 1999, “
On the Importance of Shell Buckling Experiments
,”
Appl. Mech. Rev.
0003-6900,
52
(
6
), pp.
R17
R25
.
6.
Singer
,
J.
,
Arbocz
,
J.
, and
Weller
,
T.
, 2002,
Buckling Experiments: Experimental Methods in Buckling of Thin-Walled Structures
,
Wiley
,
New York
, Vol.
2
.
7.
Esslinger
,
M.
, and
Ciprian
,
J.
, 1982, “
Buckling of Thin Conical Shells Under Axial Loads With and Without Internal Pressure
,” in
Buckling of Shells—Proceedings of a State-of-the-Art Colloquium
,
E.
Ramm
, ed.,
Springer
,
Berlin
, pp.
355
374
.
8.
Tong
,
L.
, and
Wang
,
T. K.
, 1991, “
Buckling of Circular Conical Shells of Composite Materials Under Axial Compression and External Load
,”
Buckling of Shell Structures, on Land, in the Sea and in the Air
,
J. F.
Jullien
, ed.,
Elsevier Applied Science
,
London
, pp.
124
133
.
9.
Krenzke
,
M. A.
, 1959, “
Hydrostatic Test of Conical Reducers Between Cylinder With or Without Stiffeners at the Cone-Cylinder Junctures
,” David Taylor Model Basin, Report No. 1187.
10.
Raetz
,
R. V.
, 1960, “
An Experimental Investigation of the Strength of Small-Scale Conical Reducer Sections Between Cylindrical Shells Under External Hydrostatic Pressure
,” David Taylor Model Basin, Report No. 1397.
11.
Lackman
,
L.
, and
Penzien
,
J.
, 1961, “
Buckling of Circular Cones Under Axial Compression
,”
ASME J. Appl. Mech.
0021-8936,
27
(
3
), pp.
458
460
.
12.
Weingarten
,
V. I.
, 1964, “
Stability of Internally Pressurised Conical Shells Under Torsion
,”
AIAA J.
0001-1452,
2
(
10
), pp.
1782
1788
.
13.
Weingarten
,
V. I.
, and
Seide
,
P.
, 1965, “
Elastic Stability of Thin-Walled Cylindrical and Conical Shells Under Combined External Pressure and Axial Compression
,”
AIAA J.
0001-1452,
3
(
5
), pp.
913
920
.
14.
Berkovits
,
A.
,
Singer
,
J.
, and
Weller
,
T.
, 1967, “
Buckling of Unstiffened Conical Shells Under Combined Loading
,”
Exp. Mech.
0014-4851,
7
(
11
), pp.
458
467
.
15.
Bendavid
,
D.
, and
Singer
,
J.
, 1968, “
Buckling of Electroformed Conical Shells Under Hydrostatic Pressure
,”
AIAA J.
0001-1452,
6
(
12
), pp.
2332
2338
.
16.
Arbocz
,
J.
, 1968, “
Buckling of Conical Shells Under Axial Compression
,”
NASA
Report No. CR-1162.
17.
Sekdelbeck
,
R. L.
, and
Singer
,
J.
, 1970, “
Further Experimental Studies of Buckling of Electroformed Conical Shells
,”
AIAA J.
0001-1452,
8
(
8
), pp.
1532
1534
.
18.
Mamalis
,
A. G.
, and
Johnson
,
W.
, 1983, “
The Quasi-Static Crumpling of Thin-Walled Circular Cylinders and Frusta Under Axial Compression
,”
Int. J. Mech. Sci.
0020-7403,
25
(
9–10
), pp.
713
732
.
19.
Mamalis
,
A. G.
,
Johnson
,
W.
, and
Viegelahn
,
G. L.
, 1984, “
The Crumpling of Steel Thin-Walled Tubes and Frusta Under Axial Compression at Elevated Strain-Rates: Some Experimental Results
,”
Int. J. Mech. Sci.
0020-7403,
26
(
11–12
), pp.
537
547
.
20.
Mamalis
,
A. G.
,
Manolakos
,
D. E.
,
Viegelahn
,
G. L.
,
Vaxevanidis
,
N. M.
, and
Johnson
,
W.
, 1986, “
On the Inextensional Axial Collapse of Thin PVC Conical Shells
,”
Int. J. Mech. Sci.
0020-7403,
28
(
5
), pp.
323
335
.
21.
Foster
,
C. G.
, 1987, “
Axial Compression Buckling of Conical and Cylindrical Shells
,”
Exp. Mech.
0014-4851,
27
(
3
), pp.
255
261
.
22.
Gupta
,
N. K.
,
Easwara Prasad
,
G. L.
, and
Gupta
,
S. K.
, 1997, “
Plastic Collapse of Metallic Conical Frusta of Large Semi-Apical Angles
,”
Int. J. Crashworthiness
1358-8265,
2
(
4
), pp.
349
366
.
23.
Ross
,
C. T. F.
,
Sawkins
,
D.
,
Thomas
,
J.
, and
Little
,
A. P. F.
, 1999, “
Plastic Collapse of Circular Conical Shells Under Uniform External Pressure
,”
Adv. Eng. Software
0965-9978,
30
(
9–11
), pp.
631
647
.
24.
Ross
,
C. T. F.
,
Sawkins
,
D.
, and
Johns
,
T.
, 1999, “
Inelastic Buckling of Thick-Walled Circular Conical Shells Under External Hydrostatic Pressure
,”
Ocean Eng.
0029-8018,
26
(
12
), pp.
1297
1310
.
25.
Tong
,
L.
, 1999, “
Buckling of Filament-Wound Conical Shells Under Axial Compression
,”
AIAA J.
0001-1452,
37
(
6
), pp.
778
781
.
26.
El-Sobky
,
H.
, and
Singace
,
A. A.
, 1999, “
An Experiment on Elastically Compressed Frusta
,”
Thin-Walled Struct.
0263-8231,
33
(
4
), pp.
231
244
.
27.
Chryssanthopoulos
,
M. K.
, and
Poggi
,
C.
, 2001, “
Collapse Strength of Unstiffened Conical Shells Under Axial Compression
,”
J. Constr. Steel Res.
0143-974X,
57
(
2
), pp.
165
184
.
28.
Bose
,
M. R. S. C.
,
Thomas
,
G.
,
Palaninathan
,
R.
,
Damodaran
,
S. P.
, and
Chellapandi
,
P.
, 2001, “
Buckling Investigations on a Nuclear Reactor Inner Vessel Model
,”
Exp. Mech.
0014-4851,
41
(
2
), pp.
144
150
.
29.
Mahdi
,
E.
,
Hamouda
,
A. M.
,
Sahari
,
B. B.
, and
Khalid
,
Y. A.
, 2002, “
Crushing Behavior of Cone-Cylinder-Cone Composite System
,”
Mech. Adv. Mater. Structures
,
9
(
2
), pp.
99
117
.
30.
Gupta
,
N. K.
,
Sheriff
,
M. N.
, and
Velmurugan
,
R.
, 2006, “
A Study on Buckling of Thin Conical Frusta Under Axial Loads
,”
Thin-Walled Struct.
0263-8231,
44
(
9
), pp.
986
996
.
31.
Ross
,
C. T. F.
, 2007, “
A Proposed Design Chart to Predict the Inelastic Buckling of Conical Shells Under Uniform External Pressure
,”
Marine Technology
,
44
(
2
), pp.
77
81
.
32.
Golzan
,
B. S.
, and
Showkati
,
H.
, 2008, “
Buckling of Thin-Walled Conical Shells Under Uniform External Pressure
,”
Thin-Walled Struct.
0263-8231,
46
(
5
), pp.
516
529
.
33.
2006,
ABAQUS—Theory and Standard User’s Manual Version 6.4
,
Hibbitt, Karlsson, and Sorensen
,
Pawtucket, RI
.
34.
Bushnell
,
D.
, 1976, “
BOSOR5: Program for Buckling of Elastic-Plastic Complex Shells of Revolution Including Large Deflections and Creep
,”
Comput. Struct.
0045-7949,
6
(
3
), pp.
221
239
.
35.
Riks
,
E.
, 1979, “
An Incremental Approach to the Solution of Snapping and Buckling
,”
Int. J. Solids Struct.
0020-7683
15
(
7
),
529
551
.
36.
Błachut
,
J.
, and
Smith
,
P.
, 2008, “
Buckling of Multi-Segment Underwater Pressure Hull
,”
Ocean Eng.
0029-8018,
35
(
2
), pp.
247
260
.
37.
Błachut
,
J.
, and
Magnucki
,
K.
, 2008, “
Strength, Stability, and Optimization of Pressure Vessels: Review of Selected Problems
,”
Appl. Mech. Rev.
0003-6900,
61
(
6
), p.
060801
.
38.
Błachut
,
J.
, 1995, “
Plastic Loads for Internally Pressurized Torispheres
,”
Int. J. Pressure Vessels Piping
0308-0161,
64
(
2
), pp.
91
100
.
You do not currently have access to this content.