Vortex-induced vibration (VIV) in oscillatory flow is experimentally investigated in the ocean basin. The test flexible cylinder was forced to harmonically oscillate in various combinations of amplitude and period with Keulegan-Carpenter (KC) number between 26 and 178 in three different maximum reduced velocities, URmax=4, URmax=6.5, and URmax=7.9 separately. VIV responses at cross-flow (CF) direction are investigated using modal decomposition and wavelet transformation. The results show that VIV in oscillatory flow is quite different from that in steady flow; features, such as intermittent VIV, hysteresis, amplitude modulation, and mode transition (time sharing) are observed. Moreover, a VIV developing process including “building-up,” “lock-in,” and “dying-out” in oscillatory flow, is further proposed and analyzed.

References

1.
Larsen
,
C. M.
,
Vikestad
,
K.
,
Rttervik
,
R.
,
Passano
,
E.
, and
Baarholm
,
G. S.
,
2001
,
VIVANA–Theory Manual
,
Marintek
,
Trondheim, Norway
.
2.
Vandiver
,
J. K.
, and
Lee
,
L.
,
2005
,
SHEAR7 V4.4 Program Theoretical Manual
,
Massachusetts Institute of Technology
,
Boston, MA
.
3.
Allen
,
D. W.
, and
Henning
,
D. L.
,
2001
, “
Prototype Vortex-Induced Vibration Tests for Production Risers
,”
Proceedings of the OTC
,
Houston, TX
, Paper No. OTC 13114.
4.
Chaplina
,
J. R.
,
Bearmanb
,
P. W.
,
Huera Huarteb
,
F. J.
, and
Pattendena
,
R. J.
,
2005
, “
Laboratory Measurements of Vortex-Induced Vibrations of a Vertical Tension Riser in a Stepped Current
,”
J. Fluids Struct.
,
21
, pp.
3
24
.10.1016/j.jfluidstructs.2005.04.010
5.
De Wilde
,
J. J.
, and
Huijsmans
,
R. H. M.
,
2004
, “
Laboratory Investigation of Long Riser VIV Response
,”
ISOPE Conference
,
Toulon, France
.
6.
Fu
,
S. X.
,
Ren
,
T.
,
Li
,
R. P.
, and
Wang
,
X. F.
,
2011
, “
Experimental Investigation on VIV of the Flexible Model Under Full Scale Re Number
,” 30th OMAE, Rotterdam, Paper No. OMAE2011-49042.
7.
Griffin
,
O. M.
, and
Vandiver
,
J. K.
,
1984
, “
Vortex-Induced Strumming Vibrations of Marine Cables With Attached Masses
,”
ASME J. Energy Res. Technol.
,
106
, pp.
458
485
.10.1115/1.3231106
8.
Karl
,
H. H.
, and
Kunt
,
M.
,
1999
, “
Vortex Induced Vibrations of a Catenary Riser
,”
3rd International Symposium on Cable Dynamics
,
Trondheim, Norway
, pp.
103
110
.
9.
Lie
,
H.
, and
Kaasen
,
K. E.
,
2006
, “
Modal Analysis of Measurements from a Large-Scale VIV Model Test of a Riser in Linearly Sheared Flow
,”
J. Fluids Struct.
,
22
(
4
), pp.
557
575
.10.1016/j.jfluidstructs.2006.01.002
10.
Tognarelli
,
M. A.
,
Slocum
,
S. T.
,
Frank
,
W. R.
, and
Campbell
,
R. B.
,
2004
, “
VIV Response of a long Flexible Cylinder in Uniform and Linearly Sheared Currents
,”
Proceedings of the OTC
,
Houston, TX
, Paper No. OTC 16338.
11.
Trim
,
A. D.
,
Braaten
,
H.
,
Lie
,
H.
, and
Tognarelli
,
M. A.
,
2005
, “
Experimental Investigation of Vortex-Induced Vibration of Long Marine Risers
,”
J. Fluids Struct.
,
21
, pp.
335
361
.10.1016/j.jfluidstructs.2005.07.014
12.
Vandiver
,
J. K.
,
Marcollo
,
H.
,
Swithenbank
,
S.
, and
Jhingran
, V
.
,
2005
, “
High Mode Number Vortex-Induced Vibration Field Experiments
,”
Proceedings of the OTC
,
Houston, TX
, Paper No. OTC 17383.
13.
Grant
,
R. G.
,
Litton
,
R. W.
, and
Mamidipuli
,
P.
,
1999
, “
Highly Compliant Rigid (HCR) Riser Model Tests and Analysis
,”
Proceedings of the OTC
,
Houston, TX
, Paper No. OTC 10973.
14.
Chang
,
S.-H.
, and
Isherwood
,
M.
,
2003
, “
Vortex-Induced Vibrations of Steel Catenary Risers and Steel Offloading Lines due to Platform Heave Motions
,”
Proceedings of the OTC
,
Houston, TX
, Paper No. OTC 15106.
15.
Liao
,
J. C.
,
2002
, “
Vortex-Induced Vibration of Slender Structures in Unsteady Flow
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Boston, MA
.
16.
Gonzalez
,
E. C.
,
2001
, “
High Frequency Dynamic Response of Marine Risers With Application to Flow-Induced Vibration
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Boston, MA
.
17.
Blevins
,
R. D.
,
1990
,
Flow-Induced Vibration
,
Van Nostrand Reinhold
,
New York
.
18.
Khalak
,
A.
, and
Williamson
,
C. H. K.
,
1999
, “
Motions, Forces and Mode Transitions in Vortex-Induced Vibrations at Low Mass-Damping
,”
J. Fluids Struct.
,
13
, pp.
813
851
.10.1006/jfls.1999.0236
19.
Lie
,
H.
,
Larsen
,
C. M.
, and
Kaasen
,
K. E.
,
2008
, “
Frequency Domain Model for Prediction of Stochastic Vortex Induced Vibrations for Deep Water Risers
,” 27th OMAE, Estoril, Portugal, Paper No. OMAE2008–57566.
20.
MARINTEK
,
2010
, “
Improvements in VIVANA-Prediction of Stochastic Vortex-Induced Vibrations in Deepwater Risers
,” REVIEW (Norwegian Marine Technology Research Institute), pp.
2
3
.
21.
Vandiver
,
J. K.
,
Swithenbank
,
S. B.
,
Jaiswal
,
V.
, and
Jhingran
,
V.
,
2006
, “
Fatigue Damage From Higher Mode Number Vortex-Induced Vibration
,” 25th OMAE, Hamburg, Germany, Paper No. OMAE 2006-92409.
22.
Jhingran Vikas
, and
Vandiver
,
J. K.
,
2007
, “
Incorporating the Higher Harmonics in VIV Fatigue Predictions
,” 26th OMAE, CA, Paper No. OMAE2007-29352.
23.
Price
,
R.
,
Zheng
,
H.
,
Modarres-Sadeghi
,
Y.
, and
Triantafyllou
,
M. S.
,
2011
, “
Effect of Higher Stress Harmonics and Special Width on Fatigue Damage of Marine Risers
,” 30th OMAE, Rotterdam, The Netherlands, Paper No. OMAE2011-49728.
24.
Yiannis
,
C.
, and
Owen
,
H. O.
, Jr.
,
2009
, “
Numerical Simulations of Cylinder VIV Focusing on Higher Harmonics
,” 28th OMAE, Honolulu, Hawaii, Paper No. OMAE2009-80002.
25.
Jauvtis
,
N.
, and
Williamson
,
C. H. K.
,
2004
, “
The Effect of Two Degrees of Freedom on Vortex-Induced Vibration at Low Mass and Damping
,”
J. Fluid Mech.
,
509
, pp.
23
62
.10.1017/S0022112004008778
You do not currently have access to this content.