This paper studies the two-dimensional water-entry and sedimentation of an elliptic cylinder using the subparticle scale (SPS) turbulence model of a Lagrangian particle-based smoothed-particle hydrodynamics (SPH) method. The motion of the body is driven by the hydrodynamic forces and the gravity. The present study shows the ability of the SPH method for the simulation of free-surface-involving and multiphase flow problems. The full Navier–Stokes equation, along with the continuity equation, have been solved as the governing equations of the problem. The accuracy of the numerical code is verified using the case of the water-entry and exit of a circular cylinder. The numerical simulations of the water-entry and sedimentation of the vertical and horizontal elliptic cylinder with the diameter ratio of 0.75 are performed at the Froude numbers of 0, 2, 5, and 8, and the specific gravities of 0.5, 0.75, 1, 1.5, 1.75, 2, and 2.5. The effect of the governing parameters and vortex shedding behind the elliptic cylinder on the trajectory curves, velocity components within the flow field, rotation angle, the velocity of ellipse, and the deformation of free-surface have been investigated in detail.

References

1.
Sames
,
P. C.
,
Muzaferija
,
S.
,
Peric
,
M.
, and
Schellinr
,
T. E.
,
1999
, “
Application of a Two-Fluid Finite Volume Method to Ship Slamming
,”
ASME J. Offshore Mech. Arct. Eng.
,
121
(
1
), pp.
47
52
.10.1115/1.2829554
2.
Lee
,
M.
,
Longoria
,
R.
, and
Wilson
,
D.
,
1997
, “
Ballistic Waves in High-Speed Water Entry
,”
J. Fluids Struct.
,
11
(
7
), pp.
819
844
.10.1006/jfls.1997.0103
3.
Faltinsen
,
O. M.
,
Landrini
,
M.
, and
Greco
,
M.
,
2002
, “
Green Water Loading on an FPSO
,”
ASME J. Offshore Mech. Arct. Eng.
,
124
(
2
), pp.
97
103
.10.1115/1.1464128
4.
Zio
,
E.
,
Baraldi
,
P.
, and
Patelli
,
E.
,
2006
Assessment of the Availability of an Offshore Installation by Monte Carlo Simulation
,”
Int. J. Pressure Vessels Piping
,
83
(
4
), pp.
312
320
.10.1016/j.ijpvp.2006.02.010
5.
Glowinski
,
R.
,
Pan
,
T. W.
,
Hesla
,
T.
, and
Joseph
,
D.
,
1999
, “
A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows
,”
Int. J. Multiphase Flow
,
25
(
5
), pp.
755
794
.10.1016/S0301-9322(98)00048-2
6.
Mirzaii
,
I.
, and
Passandideh-Fard
,
M.
,
2012
, “
Modeling Free Surface Flows in Presence of an Arbitrary Moving Object
,”
Int. J. Multiphase Flow
,
39
, pp.
216
226
.10.1016/j.ijmultiphaseflow.2011.08.005
7.
Yan
,
H.
,
Liu
,
Y.
,
Kominiarczuk
,
J.
, and
Yue
,
D. K. P.
,
2009
, “
Cavity Dynamics in Water Entry at Low Froude Numbers
,”
J. Fluid Mech.
,
641
, pp.
441
461
.10.1017/S0022112009991558
8.
Truscott
,
T. T.
, and
Techet
,
A. H.
,
2009
, “
Water Entry of Spinning Spheres
,”
J. Fluid Mech.
,
625
, pp.
135
165
.10.1017/S0022112008005533
9.
Worthington
,
A. M.
,
1908
,
A Study of Splashes
,
Longmans
,
Green & Co., New York
.
10.
Von Kármán
,
T.
,
1929
, “
The Impact on Seaplane Floats During Landing
,” National Advisory Committee for Aeronautics, Washington, DC.
11.
Seddon
,
C.
, and
Moatamedi
,
M.
,
2006
Review of Water Entry With Applications to Aerospace Structures
,”
Int. J. Impact Eng.
,
32
(
7
), pp.
1045
1067
.10.1016/j.ijimpeng.2004.09.002
12.
Schnitzer
,
E.
, and
Hathaway
,
M. E.
,
1953
, “
Estimation of Hydrodynamic Impact Loads and Pressure Distributions on Bodies Approximating Elliptical Cylinders With Special Reference to Water Landings of Helicopters
,” National Advisory Committee for Aeronautics, Washington, DC.
13.
Feng
,
J.
,
Hu
,
H. H.
, and
Joseph
,
D. D.
,
1994
, “
Direct Simulation of Initial Value Problems for the Motion of Solid Bodies in a Newtonian Fluid. Part 1. Sedimentation
,”
J. Fluid Mech.
,
261
, pp.
95
134
.10.1017/S0022112094000285
14.
Juárez
V. L. H.
,
2001
, “
Numerical Simulation of the Sedimentation of an Elliptic Body in an Incompressible Viscous Fluid
,”
C.R. Acad. Sci., Ser. IIb
,
329
(
3
), pp.
221
224
.10.1016/S1620-7742(01)01306-X
15.
Vazquez
,
J.
, and
Williams
,
A.
,
1994
, “
Hydrodynamic Loads on a Three-Dimensional Body in a Narrow Tank
,”
ASME J. Offshore Mech. Arct. Eng.
,
116
(
3
), pp.
117
121
10.1115/1.2920139
16.
Nobari
,
M.
, and
Ghazanfarian
,
J.
,
2009
, “
A Numerical Investigation of Fluid Flow Over a Rotating Cylinder With Cross Flow Oscillation
,”
Comput. Fluids
,
38
(
10
), pp.
2026
2036
.10.1016/j.compfluid.2009.06.008
17.
Ghazanfarian
,
J.
, and
Nobari
,
M.
,
2009
, “
A Numerical Study of Convective Heat Transfer From a Rotating Cylinder With Cross-Flow Oscillation
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5402
5411
.10.1016/j.ijheatmasstransfer.2009.06.036
18.
Nobari
,
M.
, and
Ghazanfarian
,
J.
,
2010
, “
Convective Heat Transfer From a Rotating Cylinder With Inline Oscillation
,”
Int. J. Therm. Sci.
,
49
(
10
), pp.
2026
2036
.10.1016/j.ijthermalsci.2010.05.006
19.
Ghazanfarian
,
J.
, and
Abbassi
,
A.
,
2011
, “
Numerical Investigation of Flow Over a Square Cylinder With Moving Walls and Incident Angle by CBS Method
,”
Proceedings of the 16th International Conference on Finite Elements in Flow Problems (FEF 2011)
, March 23–25, Munich, Germany.
20.
Li
,
S.
, and
Liu
,
W. K.
,
2004
,
Meshfree Particle Methods
,
Springer
,
New York
.
21.
Saghatchi
,
R.
,
Gorji-Bandpy
,
M.
, and
Ghazanfarian
,
J.
,
2012
, “
Water Impact and Sedimentation of Solid Bodies in a Newtonian Fluid Using SPH Method
,”
Proceedings of International Conference on Mechanical Engineering and Advanced Technologies (ICMEAT2012)
, Isfahan, Iran, Oct. 10–12.
22.
Ghazanfarian
,
J.
and
Saghatchi
,
R.
,
2014
, “
SPH Simulation of Fluid-Structure Interaction of Flow Past a Water-Leaving Rotating Circular Cylinder
,”
Proceedings of National Conference on Mechanical Engineering of Iran (NCMEI2014)
, Shiraz, Iran.
23.
Gomez-Gesteira
,
M.
,
Crespo
,
A.
,
Rogers
,
B.
,
Dalrymple
,
R.
,
Dominguez
,
J.
, and
Barreiro
,
A.
,
2012
, “
SPHysics Development of a Free-Surface Fluid Solver. Part 2: Efficiency and Test Cases
,”
Comput. Geosci.
,
48
, pp.
300
307
.10.1016/j.cageo.2012.02.028
24.
Gomez-Gesteira
,
M.
,
Rogers
,
B.
,
Crespo
,
A.
,
Dalrymple
,
R.
,
Narayanaswamy
,
M.
, and
Dominguez
,
J.
,
2012
, “
SPHysics Development of a Free-Surface Fluid Solver. Part 1: Theory and Formulations
,”
Comput. Geosci.
,
48
, pp.
289
299
.10.1016/j.cageo.2012.02.029
25.
Gingold
,
R. A.
and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics-Theory and Application to Non-Spherical Stars
,”
R. Astron. Soc.
,
181
, pp.
375
389
.
26.
Monaghan
,
J.
,
2012
, “
Smoothed Particle Hydrodynamics and Its Diverse Applications
,”
Annu. Rev. Fluid Mech.
,
44
(
1
), pp.
323
346
.10.1146/annurev-fluid-120710-101220
27.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
, pp.
543
574
.10.1146/annurev.aa.30.090192.002551
28.
Wendland
,
H.
,
1995
, “
Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree
,”
Adv. Comput. Math.
,
4
(
1
), pp.
389
396
.10.1007/BF02123482
29.
Dalrymple
,
R.
and
Rogers
,
B.
,
2006
, “
Numerical Modeling of Water Waves With the SPH Method
,”
Coastal Eng.
,
53
(
23
), pp.
141
147
.10.1016/j.coastaleng.2005.10.004
30.
Monaghan
,
J.
, and
Kos
,
A.
,
1999
, “
Solitary Waves on a Cretan Beach
,”
J. Waterw. Port Coast. Ocean Eng.
,
125
(
3
), pp.
145
155
.10.1061/(ASCE)0733-950X(1999)125:3(145)
31.
Rogers
,
B. D.
and
Dalrymple
,
R. A.
,
2008
,
SPH Modeling of Tsunami Waves
, World Scientific, Singapore, pp.
75
100
.
32.
Bonet
,
J.
, and
Lok
,
T. S.
,
1999
, “
Variational and Momentum Preservation Aspects of Smooth Particle Hydrodynamic Formulations
,”
Comput. Meth. Appl. Mech. Eng.
,
180
(
12
), pp.
97
115
.10.1016/S0045-7825(99)00051-1
33.
Cummins
,
S. J.
, and
Rudman
,
M.
,
1999
, “
An SPH Projection Method
,”
J. Comput. Phys.
,
152
(
2
), pp.
584
607
.10.1006/jcph.1999.6246
34.
Colagrossi
,
A.
and
Landrini
,
M.
,
2003
, “
Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
191
(
2
), pp.
448
475
.10.1016/S0021-9991(03)00324-3
35.
Monaghan
,
J.
,
1994
, “
Simulating Free Surface Flows With SPH
,”
J. Comput. Phys.
,
110
(
2
), pp.
399
406
.10.1006/jcph.1994.1034
36.
Greenhow
,
M.
and
Lin
,
W. M.
,
1983
, “
Nonlinear-Free Surface Effects: Experiments and Theory
,” Cambridge Department of Ocean Engineering, Massachusetts Institute of Technology, Report No. 83–19.
37.
Zhu
,
X.
,
Faltinsen
,
O. M.
, and
Hu
,
C.
,
2006
, “
Water Entry and Exit of a Horizontal Circular Cylinder
,”
ASME J. Offshore Mech. Arct. Eng.
,
129
(
4
), pp.
253
264
.10.1115/1.2199558
38.
Vandamme
,
J.
,
Zou
,
Q.
, and
Reeve
,
D.
,
2011
, “
Modeling Floating Object Entry and Exit Using Smoothed Particle Hydrodynamics
,”
J. Waterw. Port Coast. Ocean Eng.
,
137
(
5
), pp.
213
224
.10.1061/(ASCE)WW.1943-5460.0000086
You do not currently have access to this content.