To achieve a reliable structural model for vortex-induced vibration (VIV) the prediction of flexible risers, this paper employs structural systems with different geometrical nonlinearities (including a linear structure, a nonlinear one, a coupled cross-flow, and axial nonlinear one) and a classical oscillator to simulate cross-flow VIV. By comparing the experimental and simulation results, it is found that when the drag coefficient is assumed to be a fixed constant along the cylinder (i.e., the damping model is linear function of current velocity), it can affect the vibration amplitude considerably and may alter the dominant modes. When the excited mode of VIV is bending-stiffness dominant, the cross-flow structural nonlinearities can have a profound stiffening effect on vibration response. Although the introduction of axial deformation can reduce this function, the coupled cross-flow and axial nonlinearities still have the effect of decreasing the VIV amplitude.

References

1.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
413
455
.
2.
Sarpkaya
,
T.
,
2004
, “
A Critical Review of the Intrinsic Nature of Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
4
), pp.
389
447
.
3.
Gabbai
,
R. D.
, and
Benaroya
,
H.
,
2005
, “
An Overview of Modeling and Experiments of Vortex-Induced Vibration of Circular Cylinder
,”
J. Sound Vib.
,
282
(
3–5
), pp.
575
616
.
4.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2008
, “
A Brief Review of Recent Results in Vortex-Induced Vibration
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
6–7
), pp.
713
735
.
5.
Bearman
,
P. W.
,
2011
, “
Circular Cylinder Wakes and Vortex-Induced Vibration
,”
J. Fluids Struct.
,
27
(
5–6
), pp.
648
658
.
6.
Vandiver
,
J. K.
,
Jaiswal
,
V.
, and
Jhingran
,
V.
,
2009
, “
Insights on Vortex-Induced, Travelling Waves on Long Risers
,”
J. Fluids Struct.
,
25
(
4
), pp.
641
653
.
7.
Chaplin
,
J. R.
,
Bearman
,
P. W.
,
Cheng
,
Y.
,
Fontaine
,
E.
,
Graham
,
J. M. R.
,
Herfjord
,
K.
,
Huera-Huarte
,
F. J.
,
Isherwood
,
M.
,
Lambrakos
,
K.
,
Larsen
,
C. M.
,
Meneghini
,
J. R.
,
Moe
,
G.
,
Pattenden
,
R. J.
,
Triantafyllou
,
M. S.
, and
Willden
,
R. H. J.
,
2005
, “
Blind Prediction of Laboratory Measurements of Vortex-Induced Vibration of a Tension Riser
,”
J. Fluids Struct.
,
21
(
1
), pp.
25
40
.
8.
Qu
,
Y.
, and
Metrikine
,
A. V.
,
2016
, “
A Wake Oscillator Model With Nonlinear Coupling for the VIV of Rigid Cylinder Constrained to Vibrate in the Cross-Flow Direction
,”
ASME
Paper No. OMAE2016-54511.
9.
Khalak
,
A.
, and
Williamson
,
C. H. K.
,
1996
, “
Dynamics of a Hydroelastic Cylinder With Very Low Mass and Damping
,”
J. Fluids Struct.
,
10
(
5
), pp.
455
472
.
10.
Facchinetti
,
M. L.
,
Langre
,
E.
, and
Biolley
,
F.
,
2004
, “
Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
2
), pp.
123
140
.
11.
Huera-Huarte
,
F. J.
,
Bearman
,
P. W.
, and
Chaplin
,
J. R.
,
2006
, “
On the Force Distribution Along the Axis of a Flexible Circular Cylinder Undergoing Multi-Mode Vortex-Induced Vibration
,”
J. Fluids Struct.
,
22
(
6–7
), pp.
897
903
.
12.
Song
,
L. J.
,
Fu
,
S. X.
,
Gao
,
J.
,
Ma
,
L. X.
, and
Wu
,
J. Q.
,
2016
, “
An Investigation Into the Hydrodynamics of a Flexible Riser Undergoing Vortex-Induced Vibration
,”
J. Fluids Struct.
,
63
, pp.
325
350
.
13.
Srinil
,
N.
,
Wiercigroch
,
M.
, and
O'Brien
,
P.
,
2009
, “
Reduced-Order Modelling of Vortex-Induced Vibration of Catenary Riser
,”
Ocean Eng.
,
36
(
17–18
), pp.
1404
1414
.
14.
Srinil
,
N.
,
2010
, “
Multi-Mode Interactions in Vortex-Induced Vibrations of a Flexible Curved/Straight Structures With Geometric Nonlinearities
,”
J. Fluids Struct.
,
26
(
7–8
), pp.
1098
1122
.
15.
Lucor
,
D.
,
Mukundan
,
H.
, and
Triantafyllou
,
M. S.
,
2006
, “
Riser Modal Identification in CFD and Full-Scale Experiments
,”
J. Fluids Struct.
,
22
(
6–7
), pp.
905
917
.
16.
Elosta
,
H.
,
Huang
,
S.
, and
Incecik
,
A.
,
2014
, “
Seabed Interaction Modeling Effects on the Global Response of Catenary Pipelines: A Case Study
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
3
), p.
032001
.
17.
McQueen
,
H.
, and
Srinil
,
N.
,
2016
, “
A Modified Matlock–Duffing Model for Two-Dimensional Ice-Induced Vibrations of Offshore Structures With Geometric Nonlinearities
,”
ASME J. Offshore Mech. Arct. Eng.
,
138
(
1
), p.
011501
.
18.
Srinil
,
N.
, and
Zanganeh
,
H.
,
2012
, “
Modelling of Coupled Cross-Flow/In-Line Vortex-Induced Vibration Using Double Duffing and Van Der Pol Oscillators
,”
Ocean Eng.
,
53
, pp.
83
97
.
19.
Zanganeh
,
H.
, and
Srinil
,
N.
,
2015
, “
Coupled Axial/Lateral VIV of Marine Risers in Sheared Currents
,”
ASME
Paper No. OMAE2015-41606.
20.
Stappenbelt
,
B.
,
2011
, “
Vortex-Induced Motion of Nonlinear Compliant Low Aspect Ratio Cylindrical Systems
,”
Int. J. Offshore Polar Eng.
,
21
(
4
), pp.
280
286
.
21.
Keber
,
M.
, and
Wiercigroch
,
M.
,
2008
, “
Dynamics of a Vertical Riser With Weak Structural Nonlinearity Excited by Wakes
,”
J. Sound Vib.
,
315
(
3
), pp.
685
699
.
22.
Païdoussis
,
M. P.
,
2014
,
Fluid-Structure Interactions, Slender Structures and Axial Flow
, 2nd ed., Vol.
1
,
Academic Press
,
Oxford, UK
.
23.
Pavlovskaia
,
E.
,
Kerber
,
M.
,
Postnikov
,
A.
, and
Reddington
,
K.
,
2016
, “
Multi-Modes Approach to Modelling of Vortex-Induced Vibration
,”
Int. J. Nonlinear Mech.
,
80
, pp.
40
51
.
24.
Vandiver
,
K.
,
1993
, “
Dimensionless Parameters Important to the Prediction of Vortex-Induced Vibration of Long, Flexible Cylinders in Ocean Currents
,”
J. Fluids Struct.
,
7
(
5
), pp.
423
455
.
25.
Semler
,
C.
,
Gentleman
,
W. C.
, and
Païdoussis
,
M. P.
,
1996
, “
Numerical Solutions of Second Order Implicit Nonlinear Ordinary Differential Equation
,”
J. Sound Vib.
,
195
(
4
), pp.
553
574
.
26.
Trim
,
J. K.
,
Braaten
,
H.
,
Lie
,
H.
, and
Tognarelli
,
M. A.
,
2005
, “
Experimental Investigation of Vortex-Induced Vibration of Long Marine Risers
,”
J. Fluids Struct.
,
21
(
3
), pp.
335
361
.
27.
Lie
,
H.
, and
Kaasen
,
K. E.
,
2006
, “
Modal Analysis of Measurements From a Large-Scale VIV Model Test of a Riser in Linearly Sheared Flow
,”
J. Fluids Struct.
,
22
(
4
), pp.
557
575
.
28.
Violette
,
R.
,
Langre
,
E.
, and
Szydlowski
,
J.
,
2007
, “
Computation of Vortex-Induced Vibrations of Long Structures Using a Wake Oscillator Model: Comparison With DNS and Experiments
,”
Comput. Struct.
,
85
(
11–14
), pp.
1134
1141
.
29.
Postnikov
,
A.
,
Pavlovskaia
,
E.
, and
Szydlowski
,
J.
,
2016
, “
2DOF CFD Calibrated Wake Oscillator Model to Investigate Vortex-Induced Vibrations
,”
Int. J. Mech. Sci.
(in press).
You do not currently have access to this content.