This paper presents our recent numerical simulations of a high-solidity Wells turbine under both steady and unsteady conditions by solving Reynolds-averaged Navier–Stokes (RANS) equations. For steady conditions, the equations are solved in a reference frame with the same angular velocity of the turbine. Good agreement between numerical simulation result and experimental data has been obtained in the operational region and incipient stall conditions. The exact value of stall point has been accurately predicted. Through analyzing the detailed fluid fields, we find that the stall occurs near the tip of the blade while the boundary layer keeps attached near the hub, due to the effect of radial flow. For unsteady conditions, two types of control methods are studied: constant angular velocity and constant damping moment. For the constant angular velocity, the behaviors of the turbine under both high and low sea wave frequency are calculated to compare with those obtained by quasi-steady method. The hysteresis characteristic can be observed and deeply affects the behaviors of the Wells turbine with high wave frequency. For the constant damping moment, the turbine angular velocity is time dependent. Under sinusoidal flow, the incident flow velocity in the operational region can be improved to avoid the stall.

References

1.
Falnes
,
J.
,
2002
,
Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction
,
Cambridge University Press
,
Cambridge, UK
.
2.
Li
,
Y.
, and
Yu
,
Y.-H.
,
2012
, “
A Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
4352
4364
.
3.
Evans
,
D. V.
,
1978
, “
The Oscillating Water Column Wave-Energy Device
,”
IMA J. Appl. Math.
,
22
(
4
), pp.
423
433
.
4.
Lee
,
C.-H.
,
Newman
,
J. N.
, and
Nielsen
,
F. G.
,
1996
, “
Wave Interactions With an Oscillating Water Column
,”
Sixth International Offshore and Polar Engineering Conference
, Los Angeles, CA, May 26–31,
SPE
Paper No. ISOPE-I-96-013.
5.
Whittaker
,
T. J. T.
,
Leitch
,
J. G.
,
Long
,
A. E.
, and
Murray
,
M.
,
1985
, “
The Q. U. B.(Queen's University of Belfast) Axisymmetric and Multi-Resonant Wave Energy Convertors
,”
ASME J. Energy Resour. Technol.
,
107
(
1
), pp.
74
80
.
6.
Raghunathan
,
S.
,
1995
, “
The Wells Air Turbine for Wave Energy Conversion
,”
Prog. Aerosp. Sci.
,
31
(
4
), pp.
335
386
.
7.
Curran
,
R.
,
Stewart
,
T. P.
, and
Whittaker
,
T. J. T.
,
1997
, “
Design Synthesis of Oscillating Water Column Wave Energy Converters: Performance Matching
,”
Proc. Inst. Mech. Eng. Part A
,
211
(
6
), pp.
489
505
.
8.
Brito-Melo
,
A.
,
Gato
,
L. M. C.
, and
Sarmento
,
A. J. N. A.
,
2002
, “
Analysis of Wells Turbine Design Parameters by Numerical Simulation of the OWC Performance
,”
Ocean Eng.
,
29
(
12
), pp.
1463
1477
.
9.
Setoguchi
,
T.
,
Kim
,
T. W.
,
Takao
,
M.
,
Thakker
,
A.
, and
Raghunathan
,
S.
,
2004
, “
The Effect of Rotor Geometry on the Performance of a Wells Turbine for Wave Energy Conversion
,”
Int. J. Ambient Energy
,
25
(
3
), pp.
137
150
.
10.
Suzuki
,
M.
, and
Arakawa
,
C.
,
2008
, “
Influence of Blade Profiles on Flow Around Wells Turbine
,”
Int. J. Fluid Mach. Syst.
,
1
(
1
), pp.
148
154
.
11.
Thakker
,
A.
, and
Dhanasekaran
,
T. S.
,
2004
, “
Computed Effects of Tip Clearance on Performance of Impulse Turbine for Wave Energy Conversion
,”
Renewable Energy
,
29
(
4
), pp.
529
547
.
12.
Takao
,
M.
,
Setoguchi
,
T.
,
Kinoue
,
Y.
, and
Kaneko
,
K.
,
2007
, “
Wells Turbine With End Plates for Wave Energy Conversion
,”
Ocean Eng.
,
34
(
11
), pp.
1790
1795
.
13.
Folley
,
M.
,
Curran
,
R.
, and
Whittaker
,
T.
,
2006
, “
Comparison of Limpet Contra-Rotating Wells Turbine With Theoretical and Model Test Predictions
,”
Ocean Eng.
,
33
(
8
), pp.
1056
1069
.
14.
Gato
,
L. M. C.
, and
Falcao
,
A. F. D. O.
,
1990
, “
Performance of the Wells Turbine With a Double Row of Guide Vanes
,”
JSME Int. J. Ser. 2, Fluids Eng. Heat Transfer, Power, Combust. Thermophys. Properties
,
33
(
2
), pp.
265
271
.
15.
Dhanasekaran
,
T. S.
, and
Govardhan
,
M.
,
2005
, “
Computational Analysis of Performance and Flow Investigation on Wells Turbine for Wave Energy Conversion
,”
Renewable Energy
,
30
(
14
), pp.
2129
2147
.
16.
Thakker
,
A.
,
Frawley
,
P.
, and
Bajeet
,
E. S.
,
2001
, “
Numerical Analysis of Wells Turbine Performance Using a 3D Navier-Stokes Explicit Solver
,”
11th International Offshore and Polar Engineering Conference
, Stavanger, Norway, June 17–22,
SPE
Paper No. ISOPE-I-01-090.
17.
Kim
,
T. H.
,
Setoguchi
,
T.
,
Kaneko
,
K.
, and
Raghunathan
,
S.
,
2002
, “
Numerical Investigation on the Effect of Blade Sweep on the Performance of Wells Turbine
,”
Renewable Energy
,
25
(
2
), pp.
235
248
.
18.
Torresi
,
M.
,
Camporeale
,
S. M.
, and
Pascazio
,
G.
,
2009
, “
Detailed CFD Analysis of the Steady Flow in a Wells Turbine Under Incipient and Deep Stall Conditions
,”
ASME J. Fluids Eng.
,
131
(
7
), p.
071103
.
19.
Hu
,
Q.-H.
,
Li
,
Y.
, and
Wei
,
F.-Y.
,
2016
, “
Preliminary Results of Numerical Simulations of a Bio-Mimetic Wells Turbine
,”
ASME
Paper No. OMAE2016-54463.
20.
Torresi
,
M.
,
Camporeale
,
S. M.
,
Strippoli
,
P. D.
, and
Pascazio
,
G.
,
2008
, “
Accurate Numerical Simulation of a High Solidity Wells Turbine
,”
Renewable Energy
,
33
(
4
), pp.
735
747
.
21.
Inoue
,
M.
,
Kaneko
,
K.
,
Setoguchi
,
T.
, and
Shimamoto
,
K.
,
1986
, “
Studies on Wells Turbine for Wave Power Generator: 4th Report, Starting and Running Characteristics in Periodically Oscillating Flow
,”
Bull. JSME
,
29
(
250
), pp.
1177
1182
.
22.
Goldstein
,
S.
,
1929
, “
On the Vortex Theory of Screw Propellers
,”
Proc. R. Soc. London Ser. A
,
123
(
792
), pp.
440
465
.
23.
Newman
,
J. N.
,
1977
,
Marine Hydrodynamics
,
MIT Press
,
Cambridge, MA
.
24.
Leishman
,
J. G.
,
1990
, “
Dynamic Stall Experiments on the NACA 23012 Aerofoil
,”
Exp. Fluids
,
9
(
1–2
), pp.
49
58
.
25.
Mittal
,
S.
, and
Saxena
,
P.
,
2002
, “
Hysteresis in Flow Past a NACA 0012 Airfoil
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
19
), pp.
2207
2217
.
26.
Lee
,
T.
, and
Gerontakos
,
P.
,
2004
, “
Investigation of Flow Over an Oscillating Airfoil
,”
J. Fluid Mech.
,
512
, pp.
313
341
.
27.
Ericsson
,
L. E.
, and
Reding
,
J. P.
,
1988
, “
Fluid Mechanics of Dynamic Stall—Part I: Unsteady Flow Concepts
,”
J. Fluids Struct.
,
2
(
1
), pp.
1
33
.
You do not currently have access to this content.