This paper focuses on load mitigation by implementing controllable trailing-edge slotted flaps on the blades of an offshore wind turbine (OWT). The benchmark NREL 5 MW horizontal axis OWT is subjected to coupled stochastic aerodynamic-hydrodynamic analysis for obtaining the responses. The OWT is supported on three different fixed-bottom structures situated in various water depths. Blade element momentum (BEM) theory and Morison's equation are used to compute the aerodynamic and hydrodynamic loads, respectively. Presently, the load reduction obtained by means of the slotted flaps is regulated using an external dynamic link library considering the proportional-integral-derivative (PID) controller. BEM theory is presently modified to account for unsteady effects of flaps along the blade span. The present analysis results show reduction up to 20% in blade and tower loads for the turbine with different support structures on implementing controllable trailing edge flaps (TEFs). This study can form the basis for evaluating the performance of large-scale fixed OWT rotors.

References

References
1.
GWEC
,
2015
, “
Global Wind Report: Annual Market Update 2015
,” Global Wind Energy Council, Brussels, Belgium.
2.
Natarajan
,
A.
,
2014
, “
An Overview of the State of the Art Technologies for Multi-MW Scale Offshore Wind Turbines and Beyond
,”
Wiley Interdiscip. Rev.: Energy Environ.
,
3
(
2
), pp.
111
121
.
3.
Burton
,
T.
,
Jenkins
,
N.
,
Sharpe
,
D.
, and
Bossanyi
,
E.
,
2011
,
Wind Energy Handbook
,
Wiley
, Chichester, UK.
4.
Veers
,
P. S.
,
Ashwill
,
T. D.
,
Sutherland
,
H. J.
,
Laird
,
D. L.
,
Lobitz
,
D. W.
,
Griffin
,
D. A.
,
Mandell
,
J. F.
,
Musial
,
W. D.
,
Jackson
,
K.
,
Zuteck
,
M.
,
Miravete
,
A.
,
Tsai
,
S. W.
, and
Richmond
,
J. L.
,
2003
, “
Trends in the Design, Manufacture and Evaluation of Wind Turbine Blades
,”
Wind Energy
,
6
(
3
), pp.
245
259
.
5.
Barlas
,
T. K.
, and
Van Kuik
,
G.
,
2007
, “
State of the Art and Prospectives of Smart Rotor Control for Wind Turbines
,”
J. Phys.: Conf. Ser.
,
75
, p.
012080
.
6.
Basualdo
,
S.
,
2005
, “
Load Alleviation on Wind Turbine Blades Using Variable Airfoil Geometry
,”
Wind Eng.
,
29
(
2
), pp.
169
182
.
7.
Bergami
,
L.
,
2008
, “
Aeroelastic Stability of a 2D Airfoil Section Equipped With a Trailing Edge Flap
,” Danmarks Tekniske Universitet, Kgs. Lyngby, Denmark, Technical Report No.
Risø-R-1663(EN)
.http://orbit.dtu.dk/files/3315978/ris-r-1663.pdf
8.
Gaunaa
,
M.
,
2006
, “
Unsteady 2D Potential-Flow Forces on a Thin Variable Geometry Airfoil Undergoing Arbitrary Motion
,” Risø National Laboratory, Roskilde, Denmark, Technical Report No.
Risø-R-1478(EN)
.http://orbit.dtu.dk/files/7703536/ris_r_1478.pdf
9.
Andersen
,
P. B.
,
2005
, “
Load Alleviation on Wind Turbine Blades Using Variable Airfoil Geometry (2D and 3D Study)
,” Master's thesis, Technical University of Denmark, Kgs. Lyngby, Denmark.
10.
Troldborg
,
N.
,
2005
, “
Computational Study of the Risø-B1-18 Airfoil With a Hinged Flap Providing Variable Trailing Edge Geometry
,”
Wind Eng.
,
29
(
2
), pp.
89
113
.
11.
Wilson
,
D. G.
,
Berg
,
D. E.
,
Barone
,
M. F.
,
Berg
,
J. C.
,
Resor
,
B. R.
, and
Lobitz
,
D. W.
,
2009
, “
Active Aerodynamic Blade Control Design for Load Reduction on Large Wind Turbines
,”
European Wind Energy Conference
(
EWEC
), Marseille, France, Mar. 16–19, pp.
643
678
.http://windpower.sandia.gov/other/EWEC09-091823C.pdf
12.
Van Dam
,
C.
,
Berg
,
D. E.
, and
Johnson
,
S. J.
,
2008
, “
Active Load Control Techniques for Wind Turbines
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No.
SAND2008-4809
.http://windpower.sandia.gov/other/084809.pdf
13.
Berg
,
D. E.
,
Zayas
,
J. R.
,
Lobitz
,
D. W.
,
van Dam
,
C.
,
Chow
,
R.
, and
Baker
,
J. P.
,
2007
, “
Active Aerodynamic Load Control of Wind Turbine Blades
,”
ASME
Paper No. FEDSM2007-37604.
14.
Barlas
,
T.
,
Van Der Veen
,
G.
, and
Van Kuik
,
G.
,
2012
, “
Model Predictive Control for Wind Turbines With Distributed Active Flaps: Incorporating Inflow Signals and Actuator Constraints
,”
Wind Energy
,
15
(
5
), pp.
757
771
.
15.
Barlas
,
A.
, and
Van Kuik
,
G.
,
2009
, “
Aeroelastic Modelling and Comparison of Advanced Active Flap Control Concepts for Load Reduction on the Upwind 5 MW Wind Turbine
,”
Europe's Premier Wind Energy Event (EWEC)
, Marseille, France, Mar. 16–19, pp. 1–12.
16.
Resor
,
B.
,
Wilson
,
D.
,
Berg
,
D.
,
Berg
,
J.
,
Barlas
,
T.
,
van Wingerden
,
J.-W.
, and
Van Kuik
,
G.
,
2010
, “
Impact of Higher Fidelity Models on Active Aerodynamic Load Control for Fatigue Damage Reduction
,”
AIAA
Paper No. 2010-253.
17.
Aparicio
,
M.
,
González
,
A.
,
Gomez-Iradi
,
S.
, and
Munduate
,
X.
,
2016
, “
Development of an Engineering Code for the Implementation of Aerodynamic Control Devices in BEM
,”
J. Phys.: Conf. Ser.
,
753
, p.
082001
.
18.
Sun
,
X.
,
Dai
,
Q.
,
Menon
,
M.
, and
Ponta
,
F.
,
2017
, “
Design and Simulation of Active External Trailing-Edge Flaps for Wind Turbine Blades on Load Reduction
,”
J. Aerosp. Eng.
,
30
(
5
), p.
04017062
.
19.
Drela
,
M.
,
1989
, “
XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils
,”
Low Reynolds Number Aerodynamics
,
Springer
, Berlin, pp.
1
12
.
20.
Jonkman
,
B. J.
,
2009
, “
Turbsim User's Guide: Version 1.50
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-46198
.https://www.nrel.gov/docs/fy09osti/46198.pdf
21.
Jonkman
,
J. M.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-38060
.https://www.nrel.gov/docs/fy09osti/38060.pdf
22.
Platt
,
R. C.
, and
Abbott
,
I. H.
,
1937
, “
Aerodynamic Characteristics of NACA 23012 and 23021 Airfoils With 20-Percent-Chord External-Airfoil Flaps of NACA 23012 Section
,” Langley Memorial Aeronautical Laboratory, Hampton, VA, Technical Report No.
573
.https://ntrs.nasa.gov/search.jsp?R=19930091648
23.
Abbott
,
I. H.
, and
Von Doenhoff
,
A. E.
,
1959
,
Theory of Wing Sections, Including a Summary of Airfoil Data
,
Courier Corporation
, North Chelmsford, MA.
24.
Viterna
,
L. A.
, and
Janetzke
,
D. C.
,
1982
, “
Theoretical and Experimental Power From Large Horizontal-Axis Wind Turbines
,” National Aeronautics and Space Administration, Cleveland, OH, Technical Report No.
NASA-TM-82944
.https://ntrs.nasa.gov/search.jsp?R=19820025954
25.
Hansen
,
C.
,
2012
, “
NWTC Design Codes: AirfoilPrep
,” National Renewable Energy Laboratory, Golden, CO.
26.
Lackner
,
M. A.
, and
van Kuik
,
G.
,
2010
, “
A Comparison of Smart Rotor Control Approaches Using Trailing Edge Flaps and Individual Pitch Control
,”
Wind Energy
,
13
(
2–3
), pp.
117
134
.
27.
EWEA
,
2016
, “
The European Offshore Wind Industry-Key Trends and Statistics—2015
,” European Wind Energy Association, Brussels, Belgium.
28.
Jonkman
,
J.
, and
Musial
,
W.
,
2010
, “
Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment
,” National Renewable Energy Laboratory (NREL), Golden, CO, Technical Report No.
NREL/TP-5000-48191
.https://www.nrel.gov/docs/fy11osti/48191.pdf
29.
Vorpahl
,
F.
,
Popko
,
W.
, and
Kaufer
,
D.
,
2013
, “
Description of a Basic Model of the UpWind Reference Jacket for Code Comparison in the OC4 Project Under IEA Wind Annex XXX
,” Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Bremerhaven, Germany.
30.
Jonkman
,
J. M.
, and
Buhl
,
M. L.
, Jr.
,
2005
, “
FAST—User's Guide
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/EL-500-38230
.http://wind.nrel.gov/public/bjonkman/TestPage/FAST.pdf
31.
Johannessen
,
K.
,
Meling
,
T. S.
, and
Hayer
,
S.
,
2001
, “
Joint Distribution for Wind and Waves in the Northern North Sea
,”
11th International Offshore and Polar Engineering Conference (ISOPE)
, Stavanger, Norway, June 17–22, Paper No.
ISOPE-02-12-1-001
.https://www.onepetro.org/journal-paper/ISOPE-02-12-1-001
32.
Karimirad
,
M.
, and
Moan
,
T.
,
2011
, “
Wave-and Wind-Induced Dynamic Response of a Spar-Type Offshore Wind Turbine
,”
J. Waterw., Port Coastal Ocean Eng.
,
138
(
1
), pp.
9
20
.
33.
IEC
,
2009
, “
IEC 61400-3: Wind Turbines—Part 3: Design Requirements for Offshore Wind Turbines
,”
International Electrotechnical Commission
, Geneva, Switzerland.
34.
Søreide
,
T. H.
,
Amdahl
,
J.
,
Eberg
,
E.
,
Holmås
,
T.
, and
Hellan
,
Ø.
,
1993
,
USFOS—A Computer Program for Progressive Collapse Analysis of Steel Offshore Structures. Theory Manual
,
SINTEF
, Trondheim, Norway.
35.
Peng
,
L.
,
2010
, “
Analysis and Design of Offshore Jacket Wind Turbine
,”
Master's thesis
, Norwegian University of Science and Technology, Trondheim, Norway.https://brage.bibsys.no/xmlui/handle/11250/237815
36.
DNVGL
,
2016
, “
SESAM—WIND—User Manual—Analysis of Fixed Offshore Wind Structures (Presently Known as Fatigue Manager)
,” Det Norske Veritas, Hovik, Norway.
37.
Abhinav
,
K. A.
, and
Saha
,
N.
,
2018
, “
Nonlinear Dynamical Behaviour of Jacket Supported Offshore Wind Turbines in Loose Sand
,”
Mar. Struct.
,
57
, pp.
133
151
.
You do not currently have access to this content.