The dynamic response of a tension leg platform (TLP) floating offshore wind turbine (FOWT) was analyzed with considering the aero-hydro characteristic of the whole floating wind turbine system including the wind turbine, TLP platform, and tethers. The “aero-hydro” coupled dynamic analysis was conducted in ansys-aqwa with a dynamic link library (DLL) calculating the aerodynamics loading at every steptime based on the blade element momentum theory. Results from the coupled dynamic analysis of TLP FOWT under the condition of turbulent wind and regular wave show that the wind loads influence mainly the low-frequency response of the TLP FOWT. The wind loads have a large impact on the offsets of the TLP away from the initial position while the wave loads influence mainly the fluctuation amplitude of the TLP FOWT. The average TLP pitch response under the wind load is significantly larger due to the large wind-induced heeling moment on the wind turbine. In addition, the tension of tethers at the upwind end is greater than that at the downwind end. The wind loads could reduce effectively the average tension of the tethers, and the tension of tethers is significantly affected by the pitch motion. Results from the coupled dynamic analysis of TLP FOWT under the condition of turbulent wind and irregular wave show that the surge and pitch of TLP result in an obvious increase of thrust of the turbine and the amplitude of torque fluctuation, more attention should be paid to the pitch and surge motion of TLP FOWT.

References

1.
Butterfield
,
S.
,
Musial
,
W.
,
Jonkman
,
J.
, and
Sclavounos
,
P.
,
2007
,
Engineering Challenges for Floating Offshore Wind Turbine
,
NREL
,
Golden, CO
.
2.
Matha
,
D.
,
Fischer
,
T.
,
Kuhn
,
M.
, and
Jonkman
,
J.
,
2010
, “
Model Development and Loads Analysis of a Wind Turbine on a Floating Offshore Tension Leg Platform
,”
2009 European Offshore Wind Conference and Exhibition, National Renewable Energy Laboratory (NREL)
,
Golden, CO
, pp.
22
25
, No. NREL/CP-500-46725.
3.
Lee
,
K. H.
,
2005
,
Responses of Floating Wind Turbines to Wind and Wave Excitation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
4.
Halfpenny
,
A.
,
1998
, “
Dynamic Analysis of Both On and Offshore Wind Turbines in the Frequency Domain
,” Doctoral thesis, Vol.
13
, No.
2
,
University of London
,
London
, pp.
52
60
.
5.
Bulder
,
B. H.
,
Van Hees
,
M. T.
,
Henderson
,
A.
,
Huijsmans
,
R. H. M.
,
Pierik
,
J. T. G.
,
Snijders
,
E. J. B.
,
Wijnants
,
G. H.
, and
Wolf
,
M. J.
,
2002
,
Study to Feasibility of and Boundary Conditions for Floating Offshore Wind Turbines
,
Technische Universiteit Delft
,
Delft
.
6.
Wayman
,
E. N.
,
Sclavounos
,
P. D.
,
Butterfield
,
S.
,
Jonkman
,
J.
, and
Musial
,
W.
,
2006
, “
Coupled Dynamic Modeling of Floating Wind Turbine Systems
,”
Wear
,
302
, pp.
1583
1591
.
7.
Bae
,
Y. H.
, and
Kim
,
M. H.
,
2013
, “
Rotor-Floater-Tether Coupled Dynamics Including Second-Order Sum-Frequency Wave Loads for a Mono-Column-TLP-Type FOWT (Floating Offshore Wind Turbine)
,”
Ocean Eng.
,
61
(
6
), pp.
109
122
.
8.
Lygren
,
J. E. L.
,
2011
, “
Dynamic Response Analysis of a Tension-leg Floating Wind Turbine
,” Master's thesis,
Norges teknisknaturvitenskapeligeuniversitet, Fakultet for ingeniørvitenskap og teknologi, Institutt for marin teknikk
.
9.
Nematbakhsh
,
A.
,
Bachynski
,
E. E.
,
Gao
,
Z.
, and
Moan
,
T.
,
2015
, “
Comparison of Wave Load Effects on a TLP Wind Turbine by Using Computational Fluid Dynamics and Potential Flow Theory Approaches
,”
Appl. Ocean Res.
,
53
, pp.
142
154
.
10.
Tran
,
T. T.
, and
Kim
,
D. H.
,
2016
, “
A CFD Study Into the Influence of Unsteady Aerodynamic Interference on Wind Turbine Surge Motion
,”
Renew. Energy
,
90
, pp.
204
228
.
11.
Sandner
,
F.
,
Schlipf
,
D.
,
Matha
,
D.
,
Seifried
,
R.
, and
Cheng
,
P. W.
,
2012
,
Reduced Nonlinear Model of a Spar-Mounted Floating Wind Turbine
,
Uni Stuttgart – Universitätsbibliothek
,
Stuttgart
.
12.
Liu
,
Z. B.
,
2013
,
Experimental Study of Motion Behaviors for the Floating Foundation of Wind Power
,
Tianjin University
,
Tian Jin
.
13.
Skaare
,
B.
,
Hanson
,
T. D.
,
Nielsen
,
F. G.
,
Yttervik
,
R.
,
Hansen
,
A. M.
,
Thomsen
,
K.
, and
Larsen
,
T. J.
,
2007
, “
Integrated Dynamic Analysis of Floating Offshore Wind Turbines
,”
European Wind Energy Conference
,
Milan, Italy
,
May 7–10
, pp.
7
10
.
14.
Bahramiasl
,
S.
,
Abbaspour
,
M.
, and
Karimirad
,
M.
,
2018
, “
Experimental Study on Gyroscopic Effect of Rotating Rotor and Wind Heading Angle on Floating Wind Turbine Responses
,”
Int. J. Environ. Sci. Technol.
, pp.
1
14
.
15.
Karimirad
,
M.
, and
Moan
,
T.
,
2011
, “
Wave- and Wind-Induced Dynamic Response of a Spar-Type Offshore Wind Turbine
,”
J. Waterway Port Coast. Ocean Eng.
,
138
(
1
), pp.
9
20
.
16.
Yanzhu
,
L.
,
1989
,
Dynamics for Multi-Rigid-Body System
,
Higher Education Press
,
Beijing
.
17.
Liu
,
G.
,
Zhiqiang
,
H. U.
, and
Duan
,
F.
,
2017
, “
Research About Influence of Supporting Platform’s Motions on Aerodynamics of Offshore Floating Wind Turbine
,”
Ocean Eng.
,
35
(
1
), pp.
42
50
18.
Jonkman
,
J. M.
,
2010
,
Definition of the Floating System for Phase IV of OC3
,
National Renewable Energy Laboratory
,
Golden, CO
.
19.
Jonkman
,
J. M.
, and
Matha
,
D.
,
2011
, “
Dynamics of Offshore Floating Wind Turbines—Analysis of Three Concepts
,”
Wind Energy
,
14
(
4
), pp.
557
569
.
20.
Bae
,
Y. H.
, and
Kim
,
M. H.
,
2014
, “
Coupled Dynamic Analysis of Multiple Wind Turbines on a Large Single Floater
,”
Ocean Eng.
,
92
, pp.
175
187
.
21.
Fylling
,
I.
,
Mo
,
K.
,
Merz
,
K.
, and
Luxcey
,
N.
,
2009
, “
Floating Wind Turbine-Response Analysis With Rigid-Body Model
,”
Proceedings of European Offshore Wind
,
Stockholm, Sweden
,
Sept. 14–16
.
22.
Karimirad
,
M.
,
2013
, “
Modeling Aspects of a Floating Wind Turbine for Coupled Wave–Wind-Induced Dynamic Analyses
,”
Renew. Energy
,
53
, pp.
299
305
.
23.
Hao
,
Y.
,
Lackner
,
M.
,
Keck
,
R. E.
,
Lee
,
S.
,
Churchfield
,
M.
, and
Moriarty
,
P.
,
2013
, “
Implementing the Dynamic Wake Meandering Model in the NWTC Design Codes
32nd ASME Wind Energy Symposium
, p.
1089
.
24.
Main(e) International Consulting LLC
,
2011
, “
Floating Offshore Wind Foundations: Industrial Consortia and Projects in the United States, Europe and Japan, an Overview, Oral Presentation
.”
25.
ANSYS
,
2012
,
AQWA Reference Manual
,
ANSYS, Inc.
,
Canonsburg, PA
.
26.
Jiahao
,
C.
,
Zhiqiang
,
H.
,
Geliang
,
L.
, and
Decheng
,
W.
,
2019
, “
Coupled Aero-Hydro-Servo-Elastic Methods for Floating Wind Turbines
,”
Renew. Energy
,
130
, pp.
139
153
.
27.
Glauert
,
H.
,
1983
,
The Elements of Aerofoil and Airscrew Theory
,
Cambridge University Press
,
Cambridge
.
28.
Ren
,
N.
,
Li
,
Y.
, and
Ou
,
J.
,
2012
, “
The Wind-Wave Tunnel Test of a Tension-Leg Platform Type Floating Offshore Wind Turbine
,”
J. Renew. Sustain. Energy
,
4
(
6
), p.
063117
.
29.
Huijs
,
F.
,
De Bruijn
,
R.
, and
Savenije
,
F.
,
2014
, “
Concept Design Verification of a Semi-Submersible Floating Wind Turbine Using Coupled Simulations
,”
Energy Proc.
,
53
, pp.
2
12
.
You do not currently have access to this content.