Abstract

This paper presents a novel decision analytical framework for systems modeling in the context of the risk-informed integrity management of offshore facilities. Our focus concerns the development of system models representing environmental loads associated with storm events. Appreciating that system models in general serve to facilitate the optimal ranking of decision alternatives, we formulate the problem of systems modeling as an optimization problem to be solved jointly with the ranking of integrity management decision alternatives. Taking offset in recent developments in structure learning and Bayesian regression techniques, a generic approach for the modeling of environmental loads is established, which accommodates for a joint utilization of phenomenological understanding and knowledge contained in databases of observations. In this manner, we provide a framework and corresponding techniques supporting the combination of bottom-up and top-down modeling. Moreover, since phenomenological understanding and analysis of databases may lead to the identification of several competing system models, we include these in the formulation of the optimization problem. The proposed framework and utilized techniques are illustrated in an example. The example considers systems modeling and decision optimization in the context of a possible evacuation of an offshore facility in the face of an emerging storm event.

References

1.
Joint Committee on Structural Safety (JCSS)
,
2008
,
Risk Assessment in Engineering: Principles, System Representation & Risk Criteria
,
M. H.
Faber
, ed. https://www.jcss.byg.dtu.dk/Publications/Risk_Assessment_in_Engineering
2.
Raiffa
,
H.
, and
Schlaifer
,
R.
,
1961
,
Applied Statistical Decision Theory
,
MIT Press
,
Cambridge, MA
.
3.
Von Neumann
,
J.
,
Morgenstern
,
O.
, and
Kuhn
,
H. W.
,
1953
,
Theory of Games and Economic Behavior
,
Princeton University Press
,
Princeton, NJ
.
4.
Nielsen
,
L.
,
Glavind
,
S. T.
,
Qin
,
J.
, and
Faber
,
M. H.
,
2019
, “
Faith and Fakes—Dealing With Critical Information in Decision Analysis
,”
Civ. Eng. Environ. Syst.
,
36
(
1
), pp.
32
54
. 10.1080/10286608.2019.1615476
5.
Zhang
,
D.
,
Qian
,
L.
,
Mao
,
B.
,
Huang
,
C.
,
Huang
,
B.
, and
Si
,
Y.
,
2018
, “
A Data-Driven Design for Fault Detection of Wind Turbines Using Random Forests and Xgboost
,”
IEEE Access
,
6
, pp.
21020
21031
. 10.1109/ACCESS.2018.2818678
6.
Amasyali
,
K.
, and
El-Gohary
,
N. M.
,
2018
, “
A Review of Data-Driven Building Energy Consumption Prediction Studies
,”
Renew. Sust. Energy Rev.
,
81
, pp.
1192
1205
. 10.1016/j.rser.2017.04.095
7.
Li
,
X.
,
Ding
,
Q.
, and
Sun
,
J. Q.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks
,”
Reliab. Eng. Syst. Safe
,
172
, pp.
1
11
. 10.1016/j.ress.2017.11.021
8.
Zhu
,
B.
,
Liu
,
J. Z.
,
Cauley
,
S. F.
,
Rosen
,
B. R.
, and
Rosen
,
M. S.
,
2018
, “
Image Reconstruction by Domain-Transform Manifold Learning
,”
Nature
,
555
(
7697
), pp.
487
492
. 10.1038/nature25988
9.
Zhao
,
R.
,
Yan
,
R.
,
Chen
,
Z.
,
Mao
,
K.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning and Its Applications to Machine Health Monitoring
,”
Mech. Syst. Signal Pr.
,
115
, pp.
213
237
. 10.1016/j.ymssp.2018.05.050
10.
European Committee for Standardization (CEN)
,
2015
, “
Petroleum and Natural Gas Industries—Specific Requirements for Offshore Structures—Part 1: Metocean Design and Operating Considerations
,” EN ISO 19901-1:2015.
11.
European Committee for Standardization (CEN)
,
2008
, “
Petroleum and Natural Gas Industries – Fixed Steel Offshore Structures
,” EN ISO 19902:2008.
12.
Bazilevs
,
Y.
,
Deng
,
X.
,
Korobenko
,
A.
,
Di Scalea
,
F. L.
,
Todd
,
M. D.
, and
Taylor
,
S. G.
,
2015
, “
Isogeometric Fatigue Damage Prediction in Large-Scale Composite Structures Driven by Dynamic Sensor Data
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
091008
. 10.1115/1.4030795
13.
Li
,
C.
,
Mahadevan
,
S.
,
Ling
,
Y.
,
Choze
,
S.
, and
Wang
,
L.
,
2017
, “
Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin
,”
AIAA J.
,
55
(
3
), pp.
930
941
. 10.2514/1.J055201
14.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2018
, “
Digital Twin-Driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Tech.
,
94
(
9–12
), pp.
3563
3576
. 10.1007/s00170-017-0233-1
15.
Faber
,
M. H.
, and
Maes
,
M. A.
,
2005
, “
Epistemic Uncertainties and System Choice in Decision Making
,”
Ninth International Conference on Structural Safety and Reliability
,
Rome, Italy
,
June 19–23
, pp.
3519
3526
.
16.
Faber
,
M. H.
,
2011
, “
On the Governance of Global and Catastrophic Risks
,”
Int. J. Risk Assess Manage.
,
15
(
5–6
), pp.
400
416
. 10.1504/IJRAM.2011.043698
17.
Edenhofer
,
O.
,
Pichs-Madruga
,
R.
,
Sokona
,
Y.
,
Farahani
,
E.
,
Kadner
,
S.
,
Seyboth
,
K.
,
Adler
,
A.
,
Baum
,
I.
,
Brunner
,
S.
,
Eickemeier
,
P.
,
Kriemann
,
B.
,
Savolainen
,
J.
,
Schlömer
,
S.
,
von Stechow
,
C.
,
Zwickel
,
T.
, and
Minx
,
J. C.
, eds.,
2015
,
IPCC, 2014: Climate Change 2014: Mitigation of Climate Change
, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
Cambridge University Press
,
Cambridge, UK
, https://www.ipcc.ch/report/ar5/wg3https://www.ipcc.ch/report/ar5/wg3, Accessed September 16, 2019.
18.
Faber
,
M. H.
,
2017
, “
Risk Informed Structural Systems Integrity Management: A Decision Analytical Perspective
,”
36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
,
June 25–30
, p.
62715
.
19.
Pearl
,
J.
,
1988
,
Probabilistic Reasoning in Intelligent Systems. Networks of Plausible Inference
,
Morgan Kaufmann
,
Burlington, MA
.
20.
Koller
,
D.
, and
Friedman
,
N.
,
2009
,
Probabilistic Graphical Models: Principles and Techniques
,
MIT Press
,
Cambridge, MA
.
21.
Kjærulff
,
U. B.
, and
Madsen
,
A. L.
,
2013
,
Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis
,
Springer
,
New York
.
22.
Scutari
,
M.
, and
Denis
,
J.-B.
,
2014
,
Bayesian Networks: With Examples in R
,
CRC Press
,
Boca Raton, FL
.
23.
Pearl
,
J.
,
2009
,
Causality
,
Cambridge University Press
,
Cambridge, UK
.
24.
Russell
,
S.
, and
Norvig
,
P.
,
2014
,
Artificial Intelligence: A Modern Approach
,
Pearson Education Limited
,
Essex, UK
.
25.
Murphy
,
K. P.
,
2012
,
Machine Learning: A Probabilistic Perspective
,
MIT Press
,
Cambridge, MA
.
26.
Sørensen
,
O. R.
,
Kofoed-Hansen
,
H.
,
Rugbjerg
,
M.
, and
Sørensen
,
L. S.
,
2004
, “
A Third-Generation Spectral Wave Model Using an Unstructured Finite Volume Technique
,”
29th International Conference on Coastal Engineering
,
Lisbon, Portugal
,
Sept. 19–24
, pp.
894
906
.
27.
Saha
,
S.
,
Moorthi
,
S.
,
Wu
,
X.
,
Wang
,
J.
,
Nadiga
,
S.
,
Tripp
,
P.
,
Behringer
,
D.
,
Hou
,
Y. T.
,
Chuang
,
H. Y.
,
Iredell
,
M.
,
Ek
,
M.
,
Meng
,
J.
,
Yang
,
R.
,
Mendez
,
M. P.
,
Van Den Dool
,
H.
,
Zhang
,
Q.
,
Wang
,
W.
,
Chen
,
M.
, and
Becker
,
E.
,
2014
, “
The NCEP Climate Forecast System Version 2
,”
J. Clim.
,
27
(
6
), pp.
2185
2208
. 10.1175/JCLI-D-12-00823.1
28.
Ewans
,
K.
, and
Jonathan
,
P.
,
2008
, “
The Effect of Directionality on Northern North Sea Extreme Wave Design Criteria
,”
ASME J. Offshore Mech. Arct.
,
130
(
4
), p.
041604
. 10.1115/1.2960859
29.
Jones
,
M.
,
Hansen
,
H. F.
,
Zeeberg
,
A. R.
,
Randell
,
D.
, and
Jonathan
,
P.
,
2018
, “
Uncertainty Quantification in Estimation of Extreme Environments
,”
Coastal Eng.
,
141
, pp.
36
51
. 10.1016/j.coastaleng.2018.07.002
30.
Monti
,
S.
, and
Cooper
,
G. F.
,
1998
, “
A Multivariate Discretization Method for Learning Bayesian Networks From Mixed Data
,”
14th International Conference on Uncertainty in Artificial Intelligence
,
Madison, WI
,
July 24–26
,
Morgan Kaufmann Publishers
,
Burlington, MA
, pp.
404
413
.
31.
Friedman
,
N.
, and
Goldszmidt
,
M.
,
1996
, “
Discretizing Continuous Attributes While Learning Bayesian Networks
,”
13th International Conference on Machine Learning
,
Bari, Italy
,
July 3–6
, pp.
157
165
.
32.
Vogel
,
K.
,
2014
, “
Applications of Bayesian Networks in Natural Hazard Assessments
,” Ph.D. thesis,
University of Potsdam
,
Potsdam, Germany
, https://d-nb.info/1048476014/34https://d-nb.info/1048476014/34, Accessed September 16, 2019.
33.
Scutari
,
M.
,
2010
, “
Learning Bayesian Networks With the bnlearn R Package
,”
J. Stat. Softw.
,
35
(
3
), pp.
1
22
. 10.18637/jss.v035.i03
You do not currently have access to this content.