Abstract

The present study compares the statistical analysis methods for nonlinear hydrodynamic responses in offshore engineering. In particular, the Kac–Siegert and Hermite-moment methods were compared for estimating the probability distribution of the second-order responses represented via the two-term Volterra series. The Kac–Siegert method analytically formulates the probability density function (PDF) of the second-order Volterra series using an eigenvalue problem constructed with the frequency-domain transfer functions and the wave spectrum, whereas the Hermite-moment method utilizes the statistical moments to determine the coefficients of the fitting function. In addition, the probability distribution of the peak values in the second-order Volterra series with high spectral bandwidth was derived explicitly. The fatigue damage rate and the extreme response were estimated analytically. The accuracy and applicability of each method were investigated by comparing the methods with the results of the direct sampling obtained from the time series.

References

References
1.
Kriebel
,
D. L.
,
1992
, “
Nonlinear Wave Interaction With a Vertical Circular Cylinder. Part II: Wave Run-Up
,”
Ocean Eng.
,
19
(
1
), pp.
75
99
. 10.1016/0029-8018(92)90048-9
2.
Ormberg
,
H.
, and
Larsen
,
K.
,
1998
, “
Coupled Analysis of Floater Motion and Mooring Dynamics for a Turret-Moored Ship
,”
Appl. Ocean Res.
,
20
(
1–2
), pp.
55
67
. 10.1016/S0141-1187(98)00012-1
3.
Kim
,
S.
, and
Sclavounos
,
P. D.
,
2001
. “
Fully Coupled Response Simulations of Theme Offshore Structures in Water Depths of Up to 10,000 Feet
”,
Proceedings of the 11th International Ocean and Polar Engineering Conference (ISOPE)
,
Stavanger, Norway
,
June 17–21
, vol. 3, pp.
457
466
.
4.
Kim
,
M. H.
,
Koo
,
B. J.
,
Mercier
,
R. M.
, and
Ward
,
E. G.
,
2005
, “
Vessel/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared With OTRC Experiment
,”
Ocean Eng.
,
32
(
14–15
), pp.
1780
1802
. 10.1016/j.oceaneng.2004.12.013
5.
Kac
,
M.
, and
Siegert
,
A. J. F.
,
1947
, “
An Explicit Representation of a Stationary Gaussian Process
,”
Ann. Math. Stat.
,
18
(
3
), pp.
438
442
. 10.1214/aoms/1177730391
6.
Neal
,
E.
,
1974
, “
Second-Order Hydrodynamic Forces Due to Stochastic Excitation
,”
Proceedings of the Symposium on Naval Hydrodynamics
,
Cambridge, MA
,
June 24–28
, pp.
517
537
.
7.
Naess
,
A.
,
1986
, “
The Statistical Distribution of Second-Order Slowly-Varying Forces and Motions
,”
Appl. Ocean Res.
,
8
(
2
), pp.
110
118
. 10.1016/S0141-1187(86)80006-2
8.
Kim
,
M. H.
,
1988
, “
The Complete Second-Order Diffraction and Radiation Solutions for a Vertically Axisymmetric Body
,”
Ph.D. thesis
,
MIT
,
MA
.
9.
Naess
,
A.
,
1985
, “
Statistical Analysis of Second-Order Response of Marine Structures
,”
J. Ship Res.
,
29
(
4
), pp.
270
284
.
10.
Naess
,
A.
,
1989
, “
Prediction of Extremes of Combined First-Order and Slow-Drift Motions of Offshore Structures
,”
Appl. Ocean Res.
,
11
(
2
), pp.
100
110
.10.1016/0141-1187(89)90011-4
11.
Lim
,
D. H.
,
Kim
,
Y.
, and
Kim
,
T.
,
2017
, “
Stochastic Analysis of the Second-Order Hydrodynamic Quantities for Offshore Structures
,”
Appl. Ocean Res.
,
64
, pp.
15
30
. 10.1016/j.apor.2017.01.021
12.
Naess
,
A.
, and
Ness
,
G. M.
,
1992
, “
Second-Order, Sum-Frequency Response Statistics of Tethered Platforms in Random Waves
,”
Appl. Ocean Res.
,
14
(
1
), pp.
23
32
. 10.1016/0141-1187(92)90004-4
13.
Kim
,
T.
, and
Kim
,
Y.
,
2015
, “
Study on Prediction Method for the Springing-Induced Tension Responses of TLP
,”
Proceedings of the 25th International Ocean and Polar Engineering Conference (ISOPE)
,
Kona, Hawaii
,
June 21–26
, pp.
1386
1392
.
14.
Crandall
,
S. H.
,
1980
, “
Non-Gaussian Closure for Random Vibration of non-Linear Oscillators
,”
Int. J. NonLin. Mech.
,
15
(
4–5
), pp.
303
313
. 10.1016/0020-7462(80)90015-3
15.
Ochi
,
M. K.
,
1986
, “
Non-Gaussian Random Processes in Ocean Engineering
,”
Probabilistic Eng. Mech.
,
1
(
1
), pp.
28
39
. 10.1016/0266-8920(86)90007-X
16.
Winterstein
,
S. R.
,
1985
, “
Non-Normal Responses and Fatigue Damage
,”
J. Eng. Mech.
,
111
(
10
), pp.
1291
1295
. 10.1061/(ASCE)0733-9399(1985)111:10(1291)
17.
Winerstein
,
S. R.
,
1988
, “
Nonlinear Vibration Models for Extremes and Fatigue
,”
J. Eng. Mech.
,
114
(
10
), pp.
1772
1790
. 10.1061/(ASCE)0733-9399(1988)114:10(1772)
18.
Sobczyk
,
K.
, and
Trȩbicki
,
J.
,
1990
, “
Maximum Entropy Principle in Stochastic Dynamics
,”
Probabilistic Eng. Mech.
,
5
(
3
), pp.
102
110
. 10.1016/0266-8920(90)90001-Z
19.
Pandey
,
M.
, and
Ariaratnam
,
S.
,
1996
, “
Crossing Rate Analysis of NonGaussian Response of Linear Systems
,”
J. Eng. Mech.
,
122
(
6
), pp.
507
511
. 10.1061/(ASCE)0733-9399(1996)122:6(507)
20.
Hosking
,
J. R. M.
,
1990
, “
L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics
,”
J. R. Stat. Soc. Series B
,
52
(
1
), pp.
105
124
.
21.
Izadparast
,
A. H.
, and
Niedzwecki
,
J. M.
,
2009
, “
Probability Distributions for Wave Runup on Offshore Platform Columns
,”
Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering (OMAE)
,
Honolulu, HI
,
May 31–June 5
, pp.
607
615
.
22.
Najafian
,
G.
,
2010
, “
Comparison of Three Different Methods of Moments for Derivation of Probability Distribution Parameters
,”
Appl. Ocean Res.
,
32
(
3
), pp.
298
307
. 10.1016/j.apor.2010.06.001
23.
Winterstein
,
S. R.
, and
MacKenzie
,
C. A.
,
2013
, “
Extremes of Nonlinear Vibration: Comparing Models Based on Moments, L-Moments, and Maximum Entropy
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(
2
), p.
021602
. 10.1115/1.4007050
24.
Langley
,
R. S.
,
1987
, “
A Statistical Analysis of Non-Linear Random Waves
,”
Ocean Eng.
,
14
(
5
), pp.
389
407
. 10.1016/0029-8018(87)90052-7
25.
Wintersten
,
S. R.
,
Ude
,
T. C.
, and
Kleiven
,
G.
,
1994
, “
Springing and Slow-Drift Responses: Predicted Extremes and Fatigue vs. Simulation
,”
BOSS ’94 7th International Conference on the Behaviour of Offshore Structures
,
Cambridge, MA
,
July 12–15
, pp.
1
15
.
26.
Yang
,
L.
,
Gurley
,
K. R.
, and
Prevatt
,
D. O.
,
2013
, “
Probabilistic Modeling of Wind Pressure on Low-Rise Buildings
,”
J. Wind Eng. Ind. Aerodyn.
,
114
, pp.
18
26
. 10.1016/j.jweia.2012.12.014
27.
Newland
,
D. E.
,
1984
,
Random Vibrations and Spectral Analysis
,
Longman
,
New York
,
Chap. 10
.
28.
Kim
,
C. H.
,
2008
,
Nonlinear Waves and Offshore Structures
,
World Scientific
,
Singapore
,
Chap. 1
.
29.
Cartwright
,
D. E.
, and
Longuet-Higgins
,
M. S.
,
1956
, “
The Statistical Distribution of the Maxima of a Random Function
,”
Proc. R. Soc. Lond., Series A
,
237
(
1209
), pp.
212
232
. 10.1098/rspa.1956.0173
30.
Tovo
,
R.
,
2002
, “
Cycle Distribution and Fatigue Damage Under Broad-Band Random Loading
,”
Int. J. Fatigue
,
24
(
11
), pp.
1137
1147
. 10.1016/S0142-1123(02)00032-4
31.
Benasciutti
,
D.
,
2004
, “
Fatigue Analysis of Random Loadings
,”
Ph.D. thesis
,
University of Ferrara
,
Ferrara, Italy
.
You do not currently have access to this content.