Abstract

The effects of manufacturing process on mechanically lined pipe structural performance are investigated. Alternative manufacturing processes are considered, associated with either purely hydraulic or thermo-hydraulic expansion. The problem is solved numerically, accounting for geometric nonlinearities, local buckling phenomena, inelastic material behavior and contact between the two pipes. A three-dimensional model is developed, which simulates the manufacturing process in the first stage of the analysis and, subsequently, proceeds in the bending analysis of the lined pipe. This integrated two-stage approach constitutes the major contribution of the present research. Thermo-hydraulically expanded lined pipes are examined, with special emphasis on the case of partially heated liners, and reverse plastic loading in the liner pipe wall has been detected during depressurization. Furthermore, the numerical results show that the thermo-mechanical process results in higher mechanical bonding between the two pipes compared with the purely mechanical process and that this bonding is significantly influenced by the level of temperature in the liner pipe. It is also concluded that the value of initial gap between the two pipes before fabrication has a rather small effect on the value of liner buckling curvature. Finally, numerical results on imperfection sensitivity are reported for different manufacturing processes, and the beneficial effect of internal pressure on liner bending response is verified.

References

References
1.
Yoshida
,
T.
,
Mann
,
T.
,
Matsuda
,
S.
,
Matsui
,
S.
,
Atsuta
,
T.
,
Toma
,
S.
, and
Itoga
,
K.
,
1981
, “
The Development of Corrosion-Resistant Tubing
,”
Offshore Technology Conference
,
Houston, TX
,
Offshore Technology Conference
,
May 4–7
, pp.
365
368
,
Paper No. OTC 4153
.
2.
De Koning
,
A.
,
Nakasugi
,
H.
, and
Li
,
P.
,
2004
, “
TFP and TFT back in town (Tight fit CRA lined pipe and tubing)
,”
Stainless Steel World
, pp.
53
61
.
3.
Chen
,
W. C.
, and
Petersen
,
C. W.
,
1991
, “
Corrosion Performance of Welded CRA-Lined Pipes for Flowlines
,”
Offshore Technology Conference
,
Houston, TX
,
Offshore Technology Conference
,
May 6–9
, pp.
391
398
,
Paper No. OTC 6693
.
4.
Kane
,
R. D.
,
Wilheim
,
S. M.
,
Yoshida
,
T.
,
Matsui
,
S.
, and
Iwase
,
T.
,
1991
, “
Analysis of Bimetallic Pipe for Sour Service
,”
SPE Prod. Eng.
,
6
(
03
), pp.
291
296
. 10.2118/20837-PA
5.
Liu
,
F.
,
Zheng
,
J.
,
Xu
,
P.
,
Xu
,
M.
, and
Zhu
,
G.
,
2004
, “
Forming Mechanism of Double-Layered Tubes by Internal Hydraulic Expansion
,”
Int. J. Pressure Vessels Piping
,
81
(
7
), pp.
625
633
. 10.1016/j.ijpvp.2004.03.014
6.
Xuesheng
,
W.
,
Peining
,
L.
, and
Ruzhu
,
W.
,
2004
, “
Estimation of Residual Contact Pressure in Hydraulically Expanded CRA-Lined Pipe
,”
Chin. J. Mech. Eng.-English Ed.
,
17
(
04
), pp.
598
601
. 10.3901/CJME.2004.04.598
7.
Wang
,
X.
,
Li
,
P.
, and
Wang
,
R.
,
2005
, “
Study on Hydro-Forming Technology of Manufacturing Bimetallic CRA-Lined Pipe
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
373
378
. 10.1016/j.ijmachtools.2004.09.015
8.
Dezhi
,
Z.
,
Kuanhai
,
D.
,
Taihe
,
S.
,
Yuanhua
,
L.
,
Hongjun
,
Z.
,
Tianlei
,
L.
, and
Yongxing
,
S.
,
2014
, “
Theoretical and Experimental Study of Bimetal-Pipe Hydroforming
,”
ASME J. Pressure Vessel Technol.
,
136
(
6
), p.
061402
. 10.1115/1.4026976
9.
Guo
,
T.
,
Ozturk
,
F.
,
Jarrar
,
F.
, and
Sheikh-Ahmad
,
J. Y.
,
2017
, “
Analysis of Contact Pressure of Mechanically Lined Corrosion Resistant Alloy Pipe by Hydraulic Expansion Process
,”
ASME J. Pressure Vessel Technol.
,
139
(
2
), p.
021212
. 10.1115/1.4035314
10.
Sriskandarajah
,
T.
,
Rao
,
V.
, and
Ragupathy
,
P.
,
2013
, “
Seal Weld Fatigue Assessment for CRA Lined Pipe for HP/HT Applications
,”
The Twenty-Third International Offshore and Polar Engineering Conference
,
Anchorage, AK
,
June 30–July 5
, pp.
135
146
.
11.
Sriskandarajah
,
T.
,
Roberts
,
G.
, and
Rao
,
V.
,
2013
, “
Fatigue Aspects of CRA Lined Pipe for HP/HT Flowlines
,”
Offshore Technology Conference
,
Houston, TX
,
Offshore Technology Conference
, May 6–9, Paper No. OTC 23932.
12.
Zeng
,
D.
,
Deng
,
K.
,
Lin
,
Y.
,
Shi
,
T.
,
Shi
,
D.
, and
Zhou
,
L.
,
2014
, “
Theoretical and Experimental Study of the Thermal Strength of Anticorrosive Lined Steel Pipes
,”
Petroleum Sci.
,
11
(
3
), pp.
417
423
. 10.1007/s12182-014-0356-z
13.
Focke
,
E. S.
,
Gresnigt
,
A. M.
,
Meek
,
J.
, and
Nakasugi
,
H.
,
2004
, “
The 2-Dimensional Modelling of the Manufacturing Process of Tight Fit Pipe (TFP)
,”
The Fourteenth International Offshore and Polar Engineering Conference
,
Toulon, France
,
May 23–28
, pp.
82
90
.
14.
Focke
,
E. S.
,
2007
, “
Reeling of Tight Fit Pipe
,”
PhD thesis
,
Faculty of Civil Engineering, Delft University of Technology
,
Delft, The Netherlands
.
15.
Hilberink
,
A.
,
Gresnigt
,
A.
, and
Sluys
,
L.
,
2010
, “
A Finite Element Method Approach on Liner Wrinkling of Snug Fit Lined Pipe
,”
The Twentieth International Offshore and Polar Engineering Conference
,
Beijing, China
,
June 20–25
, pp.
41
53
.
16.
Hilberink
,
A.
,
Gresnigt
,
A.
, and
Sluys
,
L.
,
2010
, “
Liner Wrinkling of Lined Pipe Under Compression: a Numerical and Experimental Investigation
,”
ASME 29th International Conference on Ocean, Offshore and Arctic Engineering
,
Shanghai, China
,
June 6–11
,
American Society of Mechanical Engineers
,
OMAE2010-20285
, pp.
311
322
.
17.
Hilberink
,
A.
,
2011
, “
Mechanical Behaviour of Lined Pipe
,”
Faculty of Civil Engineering, Delft University of Technology
.
18.
Hilberink
,
A.
,
Gresnigt
,
A.
, and
Sluys
,
L.
,
2011
, “
Mechanical Behaviour of Lined Pipe During Bending: Numerical and Experimental Results Compared
,”
ASME 30th International Conference on Ocean, Offshore and Arctic Engineering
,
Rotterdam, The Netherlands
,
American Society of Mechanical Engineers
, OMAE2011-49434.
19.
Tkaczyk
,
T.
,
Pepin
,
A.
, and
Denniel
,
S.
,
2011
, “
Integrity of Mechanically Lined Pipes Subjected to Multi-Cycle Plastic Bending
,”
ASME 30th International Conference on Ocean, Offshore and Arctic Engineering
,
Rotterdam, The Netherlands
,
American Society of Mechanical Engineers
, OMAE2011-49270.
20.
Toguyeni
,
G. A.
, and
Banse
,
J.
,
2012
, “
Mechanically Lined Pipe: Installation by Reel-Lay
,”
Offshore Technology Conference
,
Houston, TX
,
Offshore Technology Conference
, OTC 23096.
21.
Vasilikis
,
D.
, and
Karamanos
,
S. A.
,
2012
, “
Mechanical Behavior and Wrinkling of Lined Pipes
,”
Int. J. Solids Struct.
,
49
(
23–24
), pp.
3432
3446
. 10.1016/j.ijsolstr.2012.07.023
22.
Vasilikis
,
D.
, and
Karamanos
,
S. A.
,
2013
, “
Wrinkling of Lined Steel Pipes Under Bending
,”
ASME 32nd International Conference on Ocean, Offshore and Arctic Engineering
,
Nantes, France
,
American Society of Mechanical Engineers
, OMAE2013-11122.
23.
Yuan
,
L.
, and
Kyriakides
,
S.
,
2014
, “
Liner Wrinkling and Collapse of Bi-Material Pipe Under Bending
,”
Int. J. Solids Struct.
,
51
(
3–4
), pp.
599
611
. 10.1016/j.ijsolstr.2013.10.026
24.
Yuan
,
L.
, and
Kyriakides
,
S.
,
2015
, “
Liner Wrinkling and Collapse of Girth-Welded Bi-Material Pipe Under Bending
,”
Appl. Ocean Res.
,
50
, pp.
209
216
. 10.1016/j.apor.2015.01.018
25.
Hibbitt
,
H.
,
Karlsson
,
B.
, and
Sorensen
,
P.
,
2016
,
Abaqus Analysis User’s Manual Version 2016
,
Dassault Systèmes Simulia Corp
,
Providence, RI
.
26.
Herynk
,
M. D.
,
Kyriakides
,
S.
,
Onoufriou
,
A.
, and
Yun
,
H. D.
,
2007
, “
Effects of the UOE/UOC Pipe Manufacturing Processes on Pipe Collapse Pressure
,”
Int. J. Mech. Sci.
,
49
(
5
), pp.
533
553
. 10.1016/j.ijmecsci.2006.10.001
27.
Chatzopoulou
,
G.
,
Karamanos
,
S. A.
, and
Varelis
,
G. E.
,
2016
, “
Finite Element Analysis of Cyclically-Loaded Steel Pipes During Deep Water Reeling Installation
,”
Ocean Eng.
,
124
, pp.
113
124
. 10.1016/j.oceaneng.2016.07.048
28.
Chatzopoulou
,
G.
,
Karamanos
,
S. A.
, and
Varelis
,
G. E.
,
2016
, “
Finite Element Analysis of Uoe Manufacturing Process and Its Effect on Mechanical Behavior of Offshore Pipes
,”
Int. J. Solids Struct.
,
83
, pp.
13
27
. 10.1016/j.ijsolstr.2015.12.020
29.
Hartmann
,
S.
, and
Haupt
,
P.
,
1993
, “
Stress Computation and Consistent Tangent Operator Using Non-Linear Kinematic Hardening Models
,”
Int. J. Numer. Methods Eng.
,
36
(
22
), pp.
3801
3814
. 10.1002/nme.1620362204
30.
Vasilikis
,
D.
,
2018
,
personal communication
.
31.
Atlas Specialty Metals
, 18 February
2004
.
Stainless Steel - Grade 316L - Properties, Fabrication and Applications (UNS S31603)
.
AZO MATERIALS
https://www.azom.com/article.aspx?ArticleID=2382.
32.
Gavriilidis
,
I.
, and
Karamanos
,
S. A.
,
2019
, “
Bending and Buckling of Internally-Pressurized Steel Lined Pipes
,”
Ocean Eng.
,
171
, pp.
540
553
. 10.1016/j.oceaneng.2018.11.052
33.
Alain
,
R.
,
Violan
,
P.
, and
Mendez
,
J.
,
1997
, “
Low Cycle Fatigue Behavior in Vacuum of a 316L Type Austenitic Stainless Steel Between 20 and 600 C Part I: Fatigue Resistance and Cyclic Behavior
,”
Mater. Sci. Eng. A
,
229
(
1–2
), pp.
87
94
. 10.1016/S0921-5093(96)10558-X
34.
Hong
,
S.-G.
,
Yoon
,
S.
, and
Lee
,
S.-B.
,
2003
, “
The Effect of Temperature on Low-Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel
,”
Int. J. Fatigue
,
25
(
9–11
), pp.
1293
1300
. 10.1016/S0142-1123(03)00154-3
You do not currently have access to this content.