Abstract

Extreme wave impact due to tsunamis and storm surge create large wave heights that cause destruction to coastal and offshore structures. Focused waves have been used to represent such extreme waves, and in the present study, its impact on offshore deck has been studied numerically. Numerical modeling has been carried out using open-source software reef3d, with the level set method to capture the air–water interface. Focused waves are generated by phase focusing a group of waves at a particular position and time. The nonlinearity of focused waves and its effect on the vertical impact force has been quantified for different airgaps and increasing wave heights. The wave steepness was increased to initiate phase-focused breaking in the numerical wave tank, which was then validated with the experimental results. This breaking-focused wave impact on offshore deck is then studied at different breaking locations. The results for different positionings of the deck with respect to breaker location show that the maximum horizontal impact force on the deck occurs when the plunging crest hits the deck side.

References

References
1.
Faltinsen
,
O.
,
Kjaerland
,
O.
,
Nøttveit
,
A.
, and
Vinje
,
T.
,
1977
, “
Water Impact Loads and Dynamic Response of Horizontal Circular Cylinders in Offshore Structures
,”
Proceedings of the Annual Offshore Technology Conference
,
Houstan, TX
,
May 2–5
, pp.
119
126
.
2.
Kaplan
,
P.
,
1992
, “
Wave Impact Forces on Offshore Structures: Re-Examination and New Interpretations
,”
Offshore Technology Conference.
,
Houston, TX
,
May 4–7
. http://dx.doi.org/10.4043/6814-MS
3.
Kaplan
,
P.
,
Murray
,
J. J.
, and
Yu
,
W. C.
,
1995
, “
Theoretical Analysis of Wave Impact Forces on Platform Deck Structures
,”
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering
,
Copenhagen
,
June 18–22
, pp
189
198
.
4.
Garrison
,
C. J.
,
1996
, “
Water Impact Loads on Circular Structural Members
,”
Appl. Ocean Res.
,
18
(
1
), pp.
45
54
. 10.1016/0141-1187(96)00006-5
5.
Suchithra
,
N.
, and
Koola
,
P. M.
,
1995
, “
A Study of Wave Impact of Horizontal Slabs
,”
Ocean Eng.
,
22
(
7
), pp.
687
697
. 10.1016/0029-8018(95)00001-2
6.
Ren
,
B.
, and
Wang
,
Y.
,
2003
, “
Experimental Study of Irregular Wave Impact on Structures in the Splash Zone
,”
Ocean Eng.
,
30
(
18
), pp.
2363
2377
. 10.1016/S0029-8018(03)00104-5
7.
Chen
,
H. C.
,
2010
, “
Time-Domain Simulation of Nonlinear Wave Impact Loads on Fixed Offshore Platform and Decks
,”
Int. J. Offshore Polar Eng.
,
20
(
4
), pp.
275
283
.
8.
Chen
,
Y.
,
Wu
,
Y.
,
Stewart
,
G.
,
Gullman-Strand
,
J.
, and
Lu
,
X.
,
2014
, “
Numerical Simulation of Wave in Deck Loading on Offshore Structures
,”
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering—OMAE
,
San Francisco, CA
,
June 8–13
.
9.
Abdussamie
,
N.
,
Amin
,
W.
,
Ojeda
,
R.
, and
Thomas
,
G.
,
2014
, “
Vertical Wave-in-Deck Loading and Pressure Distribution on Fixed Horizontal Decks of Offshore Platforms
,”
International Ocean and Polar Engineering Conference
,
Busan, Korea
,
June 15–20
, Vol.
3
, pp.
898
906
.
10.
Scharnke
,
J.
,
Vestbøstad
,
T. M.
,
de Wilde
,
J.
, and
Haver
,
S.
,
2014
, “
Wave-In-Deck Impact Load Measurements on a Fixed Platform Deck
,”
International Conference on Ocean, Offshore and Arctic Engineering
,
San Francisco, CA
,
June 8–13
, pp.
1
11
.
11.
Tromans
,
P. S.
,
Anaturk
,
A. R.
, and
Hagemeijer
,
A.
,
1991
, “
A New Model for the Kinematics of Large Ocean Waves-Application as a Design Wave
,”
Proceedings of 1st International Offshore and Polar Engineering Conference
,
Edinburgh, UK
,
Aug. 11–16
, pp.
64
71
.
12.
Ning
,
D. Z.
,
Teng
,
B.
,
Eatock Taylor
,
R.
, and
Zang
,
J.
,
2008
, “
Numerical Simulation of Non-Linear Regular and Focused Waves in an Infinite Water-Depth
,”
Ocean Eng.
,
35
(
8–9
), pp.
887
899
. 10.1016/j.oceaneng.2008.01.015
13.
Bihs
,
H.
,
Chella
,
M. A.
,
Kamath
,
A.
, and
Arntsen
,
O. A.
,
2017
, “
Numerical Investigation of Focused Waves and Their Interaction With a Vertical Cylinder Using REEF3D
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
4
), p.
041101
. 10.1115/1.4036206
14.
Moideen
,
R.
,
Behera
,
M. R.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2018
, “
Numerical Modelling of Solitary and Focused Wave Forces on Coastal-Bridge Deck
,”
Coastal Engineering Proceedings, 1(36), Structures 12
,
Baltimore, MD
,
July 30–Aug. 3
.
15.
Clauss
,
G. F.
,
2002
, “
Dramas of the Sea: Episodic Waves and Their Impact on Offshore Structures
,”
Appl. Ocean Res.
,
24
(
3
), pp.
147
161
. 10.1016/S0141-1187(02)00026-3
16.
Clauss
,
G. F.
,
Schmittner
,
C. E.
, and
Stutz
,
K.
,
2003
, “
Freak Wave Impact on Semisubmersibles—Time-Domain Analysis of Motions and Forces
,”
Proceedings of the International Offshore and Polar Engineering Conference
,
Honolulu, HI
,
May 25–30
, Vol.
5
, pp.
1794
1801
.
17.
Kuehnlein
,
W. L.
,
Clauss
,
G. F.
, and
Hennig
,
J.
,
2002
, “
Tailor Made Freak Waves Within Irregular Seas
,”
International Conference on Offshore Mechanics and Arctic Engineering.
,
Oslo, Norway
,
June 23–28
, pp.
759
768
.
18.
Clauss
,
G.
,
Stutz
,
K.
, and
Schmittner
,
C.
,
2004
, “
Rogue Wave Impact on Offshore Structures
,”
Proceedings of the Annual Offshore Technology Conference
,
Houston, TX
,
May 3–6
, Vol. 1, pp.
224
233
.
19.
Chaplin
,
J. R.
,
1996
, “
On Frequency-Focusing Unidirectional Waves
,”
Int. J. Offshore Polar Eng.
,
6
(
2
), pp.
131
137
.
20.
Schmittner
,
C.
,
Kosleck
,
S.
, and
Hennig
,
J.
,
2009
, “
A Phase-Amplitude Iteration Scheme for the Optimization of Deterministic Wave Sequences
,”
Proceedings of International Conference on Offshore Mechanics and Arctic Engineering—OMAE
,
Honolulu, HI
,
May 31–June 5
, Vol.
6
, pp.
653
660
.
21.
Schmittner
,
C.
, and
Hennig
,
J.
,
2012
, “
Optimization of Short-Crested Deterministic Wave Sequences Via a Phase-Amplitude Iteration Scheme
,”
International Conference on Ocean, Offshore and Arctic Engineering
,
Rio de Janeiro, Brazil
,
July 1–6
, pp.
79
86
.
22.
Wu
,
Y. L.
,
Stewart
,
G.
,
Chen
,
Y.
,
Gullman-Strand
,
J.
,
Lv
,
X.
, and
Kumar
,
P.
,
2016
, “
A CFD Application of NewWave Theory to Wave-in-Deck Simulation
,”
Int. J. Comput. Methods
,
13
(
2
), p.
1640014
. 10.1142/S0219876216400144
23.
Pakozdi
,
C.
,
Kendon
,
T. E.
, and
Stansberg
,
C. T.
,
2011
, “
Breaking Wave Impact on a Platform Column: An Introductory CFD Study
,”
Proceedings of International Conference on Offshore Mechanics and Arctic Engineering—OMAE
,
Rotterdam, The Netherlands
,
June 19–24
, pp.
645
654
.
24.
Ghadirian
,
A.
,
Bredmose
,
H.
, and
Dixen
,
M.
,
2016
, “
Breaking Phase Focused Wave Group Loads on Offshore Wind Turbine Monopiles
,”
J. Phys. Conf. Ser.
,
753
(
9
). 10.1088/1742-6596/753/9/092004
25.
Kamath
,
A.
,
Alagan Chella
,
M.
,
Bihs
,
H.
, and
Arntsen
,
ØA
,
2016
, “
Breaking Wave Interaction With a Vertical Cylinder and the Effect of Breaker Location
,”
Ocean Eng.
,
128
, pp.
105
115
. 10.1016/j.oceaneng.2016.10.025
26.
Hu
,
Z. Z.
,
Greaves
,
D.
, and
Raby
,
A.
,
2016
, “
Numerical Wave Tank Study of Extreme Waves and Wave-Structure Interaction Using OpenFoam®
,”
Ocean Eng.
,
126
, pp.
329
342
. 10.1016/j.oceaneng.2016.09.017
27.
Hu
,
Z. Z.
,
Mai
,
T.
,
Greaves
,
D.
, and
Raby
,
A.
,
2017
, “
Investigations of Offshore Breaking Wave Impacts on a Large Offshore Structure
,”
J. Fluids Struct.
,
75
, pp.
99
116
. 10.1016/j.jfluidstructs.2017.08.005
28.
Kamath
,
A.
,
Fleit
,
G.
, and
Bihs
,
H.
,
2019
, “
Investigation of Free Surface Turbulence Damping in RANS Simulations for Complex Free Surface Flows
,”
Water
,
11
(
3
), 456, pp.
1
26
. 10.3390/w11030456
29.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Aggarwal
,
A.
, and
Arntsen
,
ØA
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
, pp.
191
208
. 10.1016/j.compfluid.2016.09.012
30.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Jorgen
,
F.
,
2011
, “
A Wave Generation Toolbox for the Open-Source CFD Library: OpenFoam
,”
Int. J. Numer. Methods Fluids
,
65
, pp.
236
253
. 10.1002/fld.2454
31.
Lara
,
J. L.
,
del Jesus
,
M.
, and
Losada
,
I. J.
,
2012
, “
Three-Dimensional Interaction of Waves and Porous Coastal Structures. Part II: Experimental Validation
,”
Coast. Eng.
,
64
, pp.
26
46
. 10.1016/j.coastaleng.2012.01.009
32.
Higuera
,
P.
,
Lara
,
J. L.
, and
Losada
,
I. J.
,
2013
, “
Simulating Coastal Engineering Processes with OpenFOAM®
,”
Coast. Eng.
,
71
, pp.
119
134
. 10.1016/j.coastaleng.2012.06.002
33.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewyt
,
H.
,
1970
, “
On Partial Difference Equations in Mathematical Physics
,”
IBM J. Res. Dev.
,
98
(
1
), pp.
1
6
.
34.
Ning
,
D. Z.
,
Zang
,
J.
,
Liu
,
S. X.
,
Eatock Taylor
,
R.
,
Teng
,
B.
, and
Taylor
,
P. H.
,
2009
, “
Free-Surface Evolution and Wave Kinematics for Nonlinear Uni-Directional Focused Wave Groups
,”
Ocean Eng.
,
36
(
15–16
), pp.
1226
1243
. 10.1016/j.oceaneng.2009.07.011
35.
Kamath
,
A. M.
,
2012
, “
Calculation of Wave Forces on Structures Using REEF3D
,”
Master thesis
,
Norwegian University of Science and Technology
,
Trondheim, Norway
.
36.
Ning
,
D.
,
Wang
,
R.
,
Chen
,
L.
,
Li
,
J.
,
Zang
,
J.
,
Cheng
,
L.
, and
Liu
,
S.
,
2017
, “
Extreme Wave Run-Up and Pressure on a Vertical Seawall
,”
Appl. Ocean Res.
,
67
, pp.
188
200
. 10.1016/j.apor.2017.07.015
37.
Bihs
,
H.
,
Kamath
,
A.
,
Chella
,
M. A.
, and
Arntsen
,
O. A.
,
2019
, “
Extreme Wave Generation, Breaking and Impact Simulations With REEF3D
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
4
), p.
041802
. 10.1115/1.4042178
You do not currently have access to this content.