Abstract

Understanding hydrodynamics of a free-spanning pipeline subjected to omni-directional flows is important to engineering design. In this study, horizontally oblique flows past a three-dimensional circular cylinder in the vicinity of a plane boundary are numerically investigated using direct numerical simulations. Parametric studies are carried out at the normal Reynolds number of 500, a fixed gap-to-diameter ratio of 0.8 and five flow inclination angles (α) ranging from 0 deg to 60 deg with an increment of 15 deg. Two distinct vortex-shedding modes are observed: parallel (α ≤ 15 deg) and oblique (α ≥ 30 deg) vortex shedding. The wake evolution is further divided into two or three stages depending on α. The occurrence of the oblique vortex shedding is accompanied by the base pressure gradient along the cylinder span and the resultant axial flows near the cylinder base. The total hydrodynamic drag and lift force coefficients decrease from being the parallel mode to the oblique mode, owing to the intensified three-dimensionality of wake flows and the phase differences in the spanwise vortex shedding. The independence principle (IP) is found to be valid in predicting hydrodynamic forces and wake patterns when α ≤ 15 deg. This IP might produce unacceptable errors when α > 15 deg. In comparison with the mean drag force, the fluctuating lift force is more sensitive to the inclination angle. The IP validity range is substantially smaller than that in the case of flow past a wall-free cylinder. Such finding would be practically useful for vortex-induced vibration prediction.

References

References
1.
Taniguchi
,
S.
, and
Miyakoshi
,
K.
,
1990
, “
Fluctuating Fluid Forces Acting on a Circular Cylinder and Interference With a Plane Wall
,”
Exp. Fluids
,
9
(
4
), pp.
197
204
. 10.1007/BF00190418
2.
Price
,
S. J.
,
Sumner
,
D.
,
Smith
,
J. G.
,
Leong
,
K.
, and
Païdoussis
,
M. P.
,
2002
, “
Flow Visualization Around a Circular Cylinder Near to a Plane Wall
,”
J. Fluids Struct.
,
16
(
2
), pp.
175
191
. 10.1006/jfls.2001.0413
3.
Bearman
,
P. W.
, and
Zdravkovich
,
M. M.
,
1978
, “
Flow Around a Circular Cylinder Near a Plane Boundary
,”
J. Fluid Mech. Digit. Arch.
,
89
(
01
), p.
15
. 10.1017/S002211207800244X
4.
Grass
,
A. J.
,
Raven
,
P. W. J.
,
Stuart
,
R. J.
, and
Bray
,
J. A.
,
1984
, “
The Influence of Boundary Layer Velocity Gradients and Bed Proximity on Vortex Shedding From Free Spanning Pipelines
,”
ASME J. Energy Resour. Technol.
,
106
(
1
), pp.
70
78
. 10.1115/1.3231028
5.
Lei
,
C.
,
Cheng
,
L.
, and
Kavanagh
,
K.
,
1999
, “
Re-Examination of the Effect of a Plane Boundary on Force and Vortex Shedding of a Circular Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
80
(
3
), pp.
263
286
. 10.1016/S0167-6105(98)00204-9
6.
Wang
,
X. K.
, and
Tan
,
S. K.
,
2008
, “
Comparison of Flow Patterns in the Near Wake of a Circular Cylinder and a Square Cylinder Placed Near a Plane Wall
,”
Ocean Eng.
,
35
(
5
), pp.
458
472
. 10.1016/j.oceaneng.2008.01.005
7.
Wang
,
X. K.
, and
Tan
,
S. K.
,
2008
, “
Near-Wake Flow Characteristics of a Circular Cylinder Close to a Wall
,”
J. Fluids Struct.
,
24
(
5
), pp.
605
627
. 10.1016/j.jfluidstructs.2007.11.001
8.
Zhao
,
M.
, and
Cheng
,
L.
,
2011
, “
Numerical Simulation of Two-Degree-of-Freedom Vortex-Induced Vibration of a Circular Cylinder Close to a Plane Boundary
,”
J. Fluids Struct.
,
27
(
7
), pp.
1097
1110
. 10.1016/j.jfluidstructs.2011.07.001
9.
Wang
,
X. K.
,
Hao
,
Z.
, and
Tan
,
S. K.
,
2013
, “
Vortex-Induced Vibrations of a Neutrally Buoyant Circular Cylinder Near a Plane Wall
,”
J. Fluids Struct.
,
39
, pp.
188
204
. 10.1016/j.jfluidstructs.2013.02.012
10.
Tham
,
D. M. Y.
,
Gurugubelli
,
P. S.
,
Li
,
Z.
, and
Jaiman
,
R. K.
,
2015
, “
Freely Vibrating Circular Cylinder in the Vicinity of a Stationary Wall
,”
J. Fluids Struct.
,
59
, pp.
103
128
. 10.1016/j.jfluidstructs.2015.09.003
11.
Li
,
Z.
,
Yao
,
W.
,
Yang
,
K.
,
Jaiman
,
R. K.
, and
Khoo
,
B. C.
,
2016
, “
On the Vortex-Induced Oscillations of a Freely Vibrating Cylinder in the Vicinity of a Stationary Plane Wall
,”
J. Fluids Struct.
,
65
, pp.
495
526
. 10.1016/j.jfluidstructs.2016.07.001
12.
Bourguet
,
R.
,
Karniadakis
,
G. E.
, and
Triantafyllou
,
M. S.
,
2015
, “
On the Validity of the Independence Principle Applied to the Vortex-Induced Vibrations of a Flexible Cylinder Inclined at 60 deg
,”
J. Fluids Struct.
,
53
, pp.
58
69
. 10.1016/j.jfluidstructs.2014.09.005
13.
Bourguet
,
R.
, and
Triantafyllou
,
M. S.
,
2015
, “
Vortex-Induced Vibrations of a Flexible Cylinder at Large Inclination Angle
,”
Philos. Trans. R. Soc. A
,
373
(
2033
), p.
20140108
. 10.1098/rsta.2014.0108
14.
Lucor
,
D.
, and
Karniadakis
,
G. E.
,
2003
, “
Effects of Oblique Inflow in Vortex-Induced Vibrations
,”
Flow, Turbul. Combust.
,
71
(
1–4
), pp.
375
389
. 10.1023/B:APPL.0000014929.90891.4d
15.
Zhao
,
M.
,
Cheng
,
L.
, and
Zhou
,
T.
,
2009
, “
Direct Numerical Simulation of Three-Dimensional Flow Past a Yawed Circular Cylinder of Infinite Length
,”
J. Fluids Struct.
,
25
(
5
), pp.
831
847
. 10.1016/j.jfluidstructs.2009.02.004
16.
Zhou
,
T.
,
Wang
,
H.
,
Razali
,
S. F. M.
,
Zhou
,
Y.
, and
Cheng
,
L.
,
2010
, “
Three-Dimensional Vorticity Measurements in the Wake of a Yawed Circular Cylinder
,”
Phys. Fluids
,
22
(
1
), p.
015108
. 10.1063/1.3291072
17.
Zhao
,
M.
,
Thapa
,
J.
,
Cheng
,
L.
, and
Zhou
,
T.
,
2013
, “
Three-Dimensional Transition of Vortex Shedding Flow Around a Circular Cylinder at Right and Oblique Attacks
,”
Phys. Fluids
,
25
(
1
), p.
014105
. 10.1063/1.4788934
18.
Han
,
Q.
,
Ma
,
Y.
,
Xu
,
W.
,
Lu
,
Y.
, and
Cheng
,
A.
,
2017
, “
Dynamic Characteristics of an Inclined Flexible Cylinder Undergoing Vortex-Induced Vibrations
,”
J. Sound Vib.
,
394
, pp.
306
320
. 10.1016/j.jsv.2017.01.034
19.
Xu
,
W.
,
Ma
,
Y.
,
Ji
,
C.
, and
Sun
,
C.
,
2018
, “
Laboratory Measurements of Vortex-Induced Vibrations of a Yawed Flexible Cylinder at Different Yaw Angles
,”
Ocean Eng.
,
154
, pp.
27
42
. 10.1016/j.oceaneng.2018.01.113
20.
Kozakiewicz
,
A.
,
Fredsøe
,
J.
, and
Sumer
,
B.
,
1995
, “
Forces on Pipelines in Oblique Attack: Steady Current and Waves
,”
Proceedings of the 5th International Offshore and Polar Engineering Conference
,
The Hague, The Netherlands
, Vol.
2
,
174
183
.
21.
Zang
,
Z.
, and
Zhou
,
T.
,
2017
, “
Transverse Vortex-Induced Vibrations of a Near-Wall Cylinder Under Oblique Flows
,”
J. Fluids Struct.
,
68
, pp.
370
389
. 10.1016/j.jfluidstructs.2016.11.021
22.
Thapa
,
J.
,
Zhao
,
M.
,
Zhou
,
T.
, and
Cheng
,
L.
,
2014
, “
Three-dimensional Simulation of Vortex Shedding Flow in the Wake of a Yawed Circular Cylinder Near a Plane Boundary at a Reynolds Number of 500
,”
Ocean Eng.
,
87
(
9
), pp.
25
39
. 10.1016/j.oceaneng.2014.05.014
23.
Peskin
,
C. S.
,
2002
, “
The Immersed Boundary Method
,”
Acta Numerica
,
11
, pp.
479
517
. 10.1017/S0962492902000077
24.
Van der Vorst
,
H. A.
,
1992
, “
Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
13
(
2
), pp.
631
644
. 10.1137/0913035
25.
Ji
,
C.
,
Munjiza
,
A.
, and
Williams
,
J. J. R.
,
2012
, “
A Novel Iterative Direct-Forcing Immersed Boundary Method and Its Finite Volume Applications
,”
J. Comput. Phys.
,
231
(
4
), pp.
1797
1821
. 10.1016/j.jcp.2011.11.010
26.
Williamson
,
C. H. K.
,
2003
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
477
539
. 10.1146/annurev.fl.28.010196.002401
27.
Jiang
,
H.
, and
Cheng
,
L.
,
2017
, “
Strouhal-Reynolds Number Relationship for Flow Past a Circular Cylinder
,”
J. Fluid Mech.
,
832
, pp.
170
188
. 10.1017/jfm.2017.685
28.
Williamson
,
C. H. K.
, and
Roshko
,
A.
,
1990
, “
Measurements of Base Pressure in the Wake of a Cylinder at low Reynolds Numbers
,”
Z. Flugwiss. Weltraumforsch.
,
14
(
1
), pp.
38
46
. 10.2514/3.55610
29.
Mittal
,
R.
, and
Balachandar
,
S.
,
1995
, “
Effect of Three-Dimensionality on the Lift and Drag of Nominally two-Dimensional Cylinders
,”
Phys. Fluids
,
7
(
8
), p.
1841
1865
. 10.1063/1.868500
30.
Williamson
,
C. H. K.
,
1987
, “
Three-Dimensional Transition in the Near Wake of a Cylinder
,”
Bull. Am. Phys. SOC.
,
32
, p.
2098
.
31.
Wu
,
J.
,
Sheridan
,
J.
,
Soria
,
J.
, and
Welsh
,
M. C.
,
1994
, “
An Experimental Investigation of Streamwise Vortices in the Wake of a Bluff Body
,”
J. Fluids Struct.
,
8
(
7
), pp.
621
635
. 10.1016/S0889-9746(94)90080-9
32.
Mansy
,
H.
,
Yang
,
P.-M.
, and
Williams
,
D. R.
,
1994
, “
Quantitative Measurements of Spanwise-Periodic Three-Dimensional Structures in the Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
270
, p.
277
296
. 10.1017/S0022112094004271
33.
Zhao
,
M.
,
Tong
,
F.
, and
Cheng
,
L.
,
2012
, “
Numerical Simulation of Two-Degree-of-Freedom Vortex-Induced Vibration of a Circular Cylinder Between Two Lateral Plane Walls in Steady Currents
,”
ASME J. Fluid. Eng.
,
134
(
10
), p.
104501
10.1115/1.4007426.
34.
Batcho
,
P.
, and
Karniadakis
,
G. E.
,
1991
, “
Chaotic Transport in Two- and Three-Dimensional Flow Past a Cylinder
,”
Phys. Fluids A
,
3
(
5
), pp.
1051
1062
. 10.1063/1.858085
35.
Kravchenko
,
A. G.
, and
Moin
,
P.
,
2000
, “
Numerical Studies of Flow Over a Circular Cylinder at Re = 3900
,”
Phys. Fluids
,
12
(
2
), pp.
403
417
. 10.1063/1.870318
36.
Mathieu
,
J.
, and
Scott
,
J.
,
2000
,
An Introduction to Turbulent Flow
,
Cambridge University Press
,
Cambridge, UK
.
37.
Jeong
,
J. J. J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
332
(
1
), pp.
339
363
. 10.1017/S0022112095000462.
38.
Williamson
,
C. H. K.
,
1996
, “
Three-Dimensional Wake Transition
,”
J. Fluid Mech.
,
328
, pp.
345
407
. 10.1017/S0022112096008750
39.
Hammache
,
M.
, and
Gharib
,
M.
,
1991
, “
An Experimental Study of the Parallel and Oblique Vortex Shedding From Circular Cylinders
,”
J. Fluid Mech.
,
232
, pp.
567
590
. 10.1017/S0022112091003804
40.
Williamson
,
C. H. K.
,
1989
, “
Oblique and Parallel Modes of Vortex Shedding in the Wake of a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
,
206
(
3
), pp.
579
627
. 10.1017/S0022112089002429
You do not currently have access to this content.