Abstract

Although it has long been recognized that vortex-induced vibrations of subsea pipeline spans involve nonlinear and inelastic behavior, the current practice to assess such spans for fatigue and ultimate loading conditions is based on the modal analysis assuming linear behavior. Nevertheless, nonlinearity can be captured approximately by making the linearization amplitude dependent. The eigenvalue problem to be solved for the natural frequencies and mode shapes then involves a stiffness matrix that depends on the mode shape and amplitude of vibration. An important part of the nonlinearity comes from the soil, which is generally represented by springs. This paper presents a simple and particularly effective algorithm to solve this nonlinear eigenvalue problem by using the same algorithm that serves to track the bifurcated solution branches in quasi-static structural stability (buckling) analyses. This method is applied to an example in which the nonlinearity comes from the soil springs. The results demonstrate the importance of the nonlinearity, even at relatively low vortex-induced vibrations (VIV) amplitudes typical of the pure inline response. The inelasticity of the soil springs is also used to calculate the associated contribution to the modal damping ratio.

References

References
1.
Bruschi
,
R.
, and
Vitali
,
L.
,
1991
, “
Large-Amplitude Oscillations of Geometrically Nonlinear Elastic Beams Subjected to Hydrodynamic Excitation
,”
ASME J. Offshore Mech. Arct. Eng.
,
113
(
2
), pp.
92
104
. 10.1115/1.2919917
2.
Larsen
,
C. M.
,
Passano
,
E.
,
Baarholm
,
G. S.
, and
Koushan
,
K.
,
2004
, “
Non-linear Time Domain Analysis of Vortex Induced Vibrations for Free Spanning Pipelines
,”
Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering
,
Vancouver, Canada
,
June, 20–25
, OMAE2004-51404.
3.
Thorsen
,
M. J.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2014
, “
A Simplified Method for Time Domain Simulation of Cross-Flow Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
49
, pp.
135
148
. 10.1016/j.jfluidstructs.2014.04.006
4.
Thorsen
,
M. J.
,
Sævik
,
M.
,
Larsen
,
C. M.
,
Cunha
,
A.
,
Caetano
,
E.
,
Ribeiro
,
P.
, and
Müller
,
G.
,
2014
, “
Time Domain Simulation of Cross-Flow and in-Line Vortex-Induced Vibrations
,”
Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014
,
Porto, Portugal
,
June 30–July 2
, pp.
3105
3111
.
5.
Thorsen
,
M. J.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2016
, “
Time Domain Simulation of Vortex-Induced Vibrations in Stationary and Oscillating Flows
,”
J. Fluids Struct.
,
61
, pp.
1
19
. 10.1016/j.jfluidstructs.2015.11.006
6.
Pontaza
,
J. P.
,
Menon
,
R. G.
,
Swanson
,
R. C.
,
Jhingran
,
V.
,
Hill
,
M.
,
Kopp
,
F.
, and
Hoffman
,
J.
,
2010
, “
Fluid-Structure Interaction Simulations of a Pipeline Span Exposed to sea Bottom Currents
,”
Offshore Technology Conference, 2010
,
ASME
, Paper No. OTC 21070.
7.
DNVGL
,
2017
,
Free Spanning of Pipelines, Recommended Practice DNVGL-RP-F105
, 2017,
DNVGL
, https://oilgas.standards.dnvgl.com/download/dnvgl-rp-f105-free-spanning-pipelines
8.
DNVGL
,
2017
, “
Pipe-Soil Interaction for Submarine Pipelines
,”
Det Norskse Veritas, Recommended Practice, DNVGL-RP-F114, First Issue Edition
.
9.
Watson
,
L. T.
,
Billups
,
S. C.
, and
Morgan
,
A. P.
,
1987
, “
Algorithm 652, HOMPACK: A Suite of Codes for Globally Convergent Homotopy Algorithms
,”
ACM Trans. Math. Software
,
13
(
3
), pp.
281
310
. 10.1145/29380.214343
10.
Riks
,
E.
,
1972
, “
The Application of Newton's Method to the Problem of Elastic Stability
,”
J. Appl. Mech.
,
39
(
4
), pp.
1060
1066
. 10.1115/1.3422829
11.
Riks
,
E.
and
Rankin
,
C. C.
,
1987
, “Bordered Equations in Continuation Methods: An Improved Solution Technique,”
NLR MP 87057U
,
National Aerospace Laboratory
,
The Netherlands
.
12.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
,
1986
,
Numerical Recipes, The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
13.
Bruschi
,
R.
,
Montesi
,
M.
,
Ragaglia
,
R.
, and
Tura
,
F.
,
1987
, “
A New Boundary Element for Span Analysis
,”
Offshore Mechanics and Arctic Engineering Conference
,
ASME
, OMAE 1987, Paper No. 765.
14.
Bernetti
,
R.
,
Bruschi
,
R.
,
Curti
,
G. B.
, and
Carletti
,
A.
,
1989
, “
Sull'Utilizzo Della Risposta Dinamica Nella Identificazione dei Parametri Caratterizanti L'Interazione Suolo-Tubo
,”
XVII Convegno Nazionale Della Associazione Italiana per L'Analisi Delle Sollecitazione
,
Ancona
,
Sept. 12–16
.
15.
Bernetti
,
R.
,
Bruschi
,
R.
,
Curti
,
G.
, and
Simantiras
,
P.
,
1990
, “
Theoretical and Experimental Analysis of Pipe-Soil Interaction at Free Span Shoulders for Oscillating Pipelines
,”
Proceedings of the First (1990) European Offshore Mechanics Symposium
,
Trondheim, Norway
,
Aug. 20–22
,
International Society of Offshore and Polar Engineers (ISOPE)
.
16.
Triantafyllou
,
G. S.
,
1998
, “
Vortex Induced Vibrations of Long Cylindrical Structures
,” The City College of New York, New York, New York, 10031,
Paper Presented at the 1998 Summer Meeting of the American Society of Mechanical Engineers
,
Washington, D.C
.
17.
Larsen
,
C. M.
,
Lie
,
H.
,
Yttervik
,
R.
,
Passano
,
E.
, and
Baarholm
,
G. S.
,
2008
, “
Vivana—Theory Manual
, ”
Marintec, Project No. 516419
,
Sept
. 2008.
18.
VIV Question
”,
2020
,
Elizabeth Passano of Sintef Ocean
,
Jan
.
13
.
19.
Chiappinelli
,
R.
,
2018
, “
What Do You Mean by “Nonlinear Eigenvalue Problems”?
,”
Axioms
,
7
(
2
), p.
39
. 10.3390/axioms7020039
20.
Peek
,
R.
, and
Kheyrkhahan
,
M.
,
1993
, “
Postbuckling Behavior and Imperfection Sensitivity of Elastic Structures by the Lyapunov-Schmidt-Koiter Approach
,”
Comput. Methods Appl. Mech. Eng.
,
108
(
3–4
), pp.
261
279
. 10.1016/0045-7825(93)90005-I
21.
Peek
R.
,
2016
NPEX Finite Element Analysis Program Release
,”
Report No. SR.16.12288
,
Shell Global Solutions, International, B.V.
, www.peek.solutions.
22.
Peek
,
R.
,
Witz
,
M.
, and
Vedeld
,
K.
,
2020
, “
Dynamics of a Pipeline Span on an Elastic Seabed
,”
Applied Ocean Research
,
Nov
.
2019
.
23.
Masing
,
G.
,
1926
, “
Eigenspannungen und Verfestigung Beim Messing
,”
Proceedings of 2nd International Congress on Applied Mechanics
,
Zurich
,
Sept. 12–17
, pp.
332
335
.
24.
Sollund
,
H. A.
,
Vedeld
,
K.
, and
Fyrileiv
,
O.
,
2015
, “
Modal Response of Free-Spanning Pipelines Based on Dimensional Analysis
,”
Appl. Ocean Res.
,
50
, pp.
13
29
. 10.1016/j.apor.2014.12.001
25.
Det Norske Veritas
,
2016
, “
Fatigue Design of Offshore Steel Structures
,”
Det Norskse Veritas
,
Recommended Practice, DNVGL-RP-C203
,
April
2016.
26.
Besedin
,
D.
,
Peek
,
R.
,
Ang
,
S. Y.
,
Vedeld
,
K.
,
Fyrileiv
,
O.
, and
Gulyaev
,
A.
,
2018
, “
Effects of Correlation Between Waves and Currents on Pipeline Free Span VIV Fatigue—A Case Study
,”
Proc. ASME 2018 37th Int. Conf. on Ocean, Offshore and Arctic Engineering
,
Madrid, Spain
,
June 17–22, 2018
, OMAE2018, Paper No. OMAE2018-77455.
27.
Assimaki
,
D.
, and
Kausel
,
E.
,
2002
, “
Seismic Simulation of Inelastic Soils via Frequency-Dependent Moduli and Damping
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
,
128
(
1
), pp.
34
47
. https://ascelibrary.org/doi/abs/10.1061/
28.
References on Amplitude Dependent Soil Springs for Span and Riser Assessments
”,
2020
email correspondence with Michael S. Triantafyllou of MIT
,
Jan
.
13
.
You do not currently have access to this content.