Abstract

Environmental contour method is an efficient method for predicting the long-term extreme response of offshore structures. The traditional environmental contour is obtained using the joint distribution of mean wind speed, significant wave height, and spectral peak period. To improve the accuracy of traditional environmental contour method, a modified method was proposed considering the non-monotonic aerodynamic behavior of offshore wind turbines. Still, the modified method assumes constant wind turbulence intensity. In this paper, we extend the existing environmental contour methods by considering the wind turbulence intensity as a stochastic variable. The 50-year extreme responses of a monopile-based offshore wind turbine are compared using the extended environmental contour methods and the full long-term method. It is found that both the environmental contour method and the modified environmental contour method, with the wind turbulence intensity included as an individual variable, give more accurate predictions compared with those without. Using the full long-term method as a benchmark, this extended approach could reduce the nonconservatism of the environmental contour method and conservatism of the modified environmental contour method. This approach is effective under wind-dominated or combined wind-wave loading conditions, but may not be as important for wave-dominated conditions.

References

1.
Ren
,
Z.
,
Jiang
,
Z.
,
Gao
,
Z.
, and
Skjetne
,
R.
,
2018
, “
Active Tugger Line Force Control for Single Blade Installation
,”
Wind Energy
,
21
(
12
), pp.
1344
1358
. 10.1002/we.2258
2.
Wen
,
B.
,
Dong
,
X.
,
Tian
,
X.
,
Peng
,
Z.
,
Zhang
,
W.
, and
Wei
,
K.
,
2018
, “
The Power Performance of An Offshore Floating Wind Turbine in Platform Pitching Motion
,”
Energy
,
154
, pp.
508
521
. 10.1016/j.energy.2018.04.140
3.
Verma
,
A. S.
,
Jiang
,
Z.
,
Vedvik
,
N. P.
,
Gao
,
Z.
, and
Ren
,
Z.
,
2019
, “
Impact Assessment of a Wind Turbine Blade Root During An Offshore Mating Process
,”
Eng. Struct.
,
180
, pp.
205
222
. 10.1016/j.engstruct.2018.11.012
4.
Giske
,
F.-I. G.
,
Leira
,
B. J.
, and
Øiseth
,
O.
,
2017
, “
Full Long-Term Extreme Response Analysis of Marine Structures Using Inverse Form
,”
Probab. Eng. Mech.
,
50
, pp.
1
8
. 10.1016/j.probengmech.2017.10.007
5.
Haver
,
S.
,
1987
, “
On the Joint Distribution of Heights and Periods of Sea Waves
,”
Ocean Eng.
,
14
(
5
), pp.
359
376
. 10.1016/0029-8018(87)90050-3
6.
Winterstein
,
S. R.
,
Ude
,
T. C.
,
Cornell
,
C. A.
,
Bjerager
,
P.
, and
Haver
,
S.
,
1993
, “
Environmental Parameters for Extreme Response: Inverse Form With Omission Factors
,”
Proceedings of the ICOSSAR-93, Innsbruck
,
Austria, Aug. 9–13
, pp.
551
557
.
7.
Saranyasoontorn
,
K.
, and
Manuel
,
L.
,
2004
, “
Efficient Models for Wind Turbine Extreme Loads Using Inverse Reliability
,”
J. Wind Eng. Ind. Aerodyn.
,
92
(
10
), pp.
789
804
. 10.1016/j.jweia.2004.04.002
8.
Huseby
,
A. B.
,
Vanem
,
E.
, and
Natvig
,
B.
,
2015
, “
Alternative Environmental Contours for Structural Reliability Analysis
,”
Struct. Saf.
,
54
, pp.
32
45
. 10.1016/j.strusafe.2014.12.003
9.
Manuel
,
L.
,
2006
, “
Design Loads for Wind Turbines Using the Environmental Contour Method
,”
ASME J. Sol. Energy Eng.
,
128
(
4
), pp.
554
561
. 10.1115/1.2346700
10.
Vanem
,
E.
,
2017
, “
A Comparison Study on the Estimation of Extreme Structural Response From Different Environmental Contour Methods
,”
Mar. Struct.
,
56
, pp.
137
162
. 10.1016/j.marstruc.2017.07.002
11.
Li
,
Q.
,
Gao
,
Z.
, and
Moan
,
T.
,
2016
, “
Modified Environmental Contour Method for Predicting Long-Term Extreme Responses of Bottom-Fixed Offshore Wind Turbines
,”
Mar. Struct.
,
48
, pp.
15
32
. 10.1016/j.marstruc.2016.03.003
12.
Li
,
Q.
,
Gao
,
Z.
, and
Moan
,
T.
,
2017
, “
Modified Environmental Contour Method to Determine the Long-Term Extreme Responses of a Semi-Submersible Wind Turbine
,”
Ocean Eng.
,
142
, pp.
563
576
. 10.1016/j.oceaneng.2017.07.038
13.
Li
,
L.
,
Yuan
,
Z.
,
Gao
,
Y.
,
Zhang
,
X.
, and
Tezdogan
,
T.
,
2019
, “
Investigation on Long-Term Extreme Response of An Integrated Offshore Renewable Energy Device with a Modified Environmental Contour Method
,”
Renewable Energy
,
132
, pp.
33
42
. 10.1016/j.renene.2018.07.138
14.
Larsen
,
G. C.
,
Jørgensen
,
H. E.
,
Argyriadis
,
K.
, and
Boer
,
J.
,
1999
, “Ultimate Loading of Wind Turbines,”
Technical Report
,
Risø-R-1111(EN), Risø National Laboratory
,
Roskilde, Denmark
.
15.
Hansen
,
K. S.
, and
Larsen
,
G. C.
,
2005
, “
Characterising Turbulence Intensity for Fatigue Load Analysis of Wind Turbines
,”
Wind Eng.
,
29
(
4
), pp.
319
329
. 10.1260/030952405774857897
16.
Ernst
,
B.
, and
Seume
,
J. R.
,
2012
, “
Investigation of Site-Specific Wind Field Parameters and Their Effect on Loads of Offshore Wind Turbines
,”
Energies
,
5
(
10
), pp.
3835
3855
. 10.3390/en5103835
17.
IEC
,
2005
,
61400-1: Wind Turbines-Part 1: Design Requirements
,
International Standard, International Electrotechnical Commission
,
Geneva, Switzerland
, pp.
1
92
.
18.
DNV
,
2004
,
Design of Offshore Wind Turbine Structures
,
Offshore Standard, DNV-OS-J101, Det Norske Veritas
,
Oslo, Norway
.
19.
Jonkman
,
J. M.
, and
Buhl
,
M. L.
, Jr.
,
2006
, “Fast User's Guide,”
Technical Report
,
National Renewable Energy Lab
,
Golden, CO
.
20.
Jonkman
,
J. M.
, and
Buhl
,
M. L.
, Jr.
,
2006
, “Turbsim User's Guide,”
Technical Report
,
National Renewable Energy Lab
,
Golden, CO
.
21.
Chen
,
X.
,
Jiang
,
Z.
,
Li
,
Q.
, and
Li
,
Y.
,
2019
, “
Effect of Wind Turbulence on Extreme Load Analysis of An Offshore Wind Turbine
,”
38th International Conference on Ocean, Offshore and Arctic Engineering
,
Glasgow, UK
, June 9–14.
22.
Larsen
,
G. C.
, and
Jørgensen
,
H. E.
,
1999
, “
Variability of Wind Speeds
,”
Technical Report
,
Risø-R-1078, Risø National Laboratory
,
Roskilde, Denmark
.
23.
Li
,
L.
,
Gao
,
Z.
, and
Moan
,
T.
,
2013
, “
Joint Environmental Data At Five European Offshore Sites for Design of Combined Wind and Wave Energy Devices
,”
32nd International Conference on Ocean, Offshore and Arctic Engineering
,
Nantes, France, June 9–14
.
24.
Rosenblatt
,
Murray
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Statis.
,
23
(
3
), pp.
470
472
.
25.
Jonkman
,
J. M.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,”
Technical Report
,
National Renewable Energy Lab
,
Golden, CO
.
26.
Li
,
Q.
,
Gao
,
Z.
, and
Moan
,
T.
,
2013
, “
Extreme Response Analysis for a Jacket-Type Offshore Wind Turbine Using Environmental Contour Method
,”
Proceedings of 11th International Conference on Structural Safety and Reliability
,
New York, June 16–20.
27.
Gao
,
Z.
,
Saha
,
N.
,
Moan
,
T.
, and
Amdahl
,
J.
,
2010
, “
Dynamic Analysis of Offshore Fixed Wind Turbines Under Wind and Wave Loads Using Alternative Computer Codes
,”
3rd The Science of Making Torque From Wind Conference (TORQUE)
,
Crete, Greece
.
28.
Brodtkorb
,
P. A.
,
Johannesson
,
P.
,
Lindgren
,
G.
,
Rychlik
,
I.
,
Ryden
,
J.
, and
Sjö
,
E.
,
2000
, “
Wafo-A Matlab Toolbox for Analysis of Random Waves and Loads
,”
The 10th International Offshore and Polar Engineering Conference
,
Seattle, WA
, May 28–June 2.
29.
Bronshtein
,
I. N.
,
Semendyayev
,
K. A.
, and
Musiol
,
Gerhard
,
2015
, “Probability Theory and Mathematical Statistics,”
Handbook of Mathematics
,
Springer
,
Berlin, Heidelberg
.
You do not currently have access to this content.