Abstract

In the present study, flow around symmetric trapezoidal wall-mounted structures with different slope angles of the two sides subjected to a boundary layer flow at Reynolds numbers of 1.19 × 105 and 1 × 106 (based on the height of the structures and the freestream velocity) is investigated using two-dimensional (2D) Reynolds-averaged Navier–Stokes (RANS) equations combined with the k − ω shear stress transport (SST) turbulence model. It is found that the drag coefficient of the wall-mounted square structures using the k − ω SST turbulence model is in good agreement with the available published experimental data. The effects of slope angles of the two sides on the hydrodynamic quantities and the flow fields around the structures have been investigated.

References

References
1.
Kuijpers
,
A.
, and
Nielsen
,
T.
,
2016
, “
Near-Bottom Current Speed Maxima in North Atlantic Contourite Environments Inferred From Current-Induced Bedforms and Other Seabed Evidence
,”
Mar. Geol.
,
378
, pp.
230
236
. 10.1016/j.margeo.2015.11.003
2.
Tauqeer
,
M. A.
,
Li
,
Z.
, and
Ong
,
M. C.
,
2017
, “
Numerical Simulation of Flow Around Different Wall-Mounted Structures
,”
Ships Offshore Struct.
,
12
(
8
), pp.
1109
1116
. 10.1080/17445302.2017.1316557
3.
Arie
,
M.
,
Kiya
,
M.
,
Tamura
,
H.
,
Kosugi
,
M.
, and
Takaoka
,
K.
,
1975
, “
Flow Over Rectangular Cylinders Immersed in a Turbulent Boundary Layer: Part 2 Flow Patterns and Pressure Distributions
,”
Bull. Japan Soc. Mech. Eng.
,
18
(
125
), pp.
1269
1276
. 10.1299/jsme1958.18.1269
4.
Bergeles
,
G.
, and
Athanassiadis
,
N.
,
1983
, “
The Flow Past a Surface-Mounted Obstacle
,”
J. Fluid. Eng.
,
105
(
4
), pp.
461
463
. 10.1115/1.3241030
5.
Meroney
,
R. N.
, and
Neff
,
D. E.
,
2010
, “
Wind Effects on Roof-Mounted Solar Photovoltaic Arrays: CFD and Wind-Tunnel Evaluation
,”
The Fifth International Symposium on Computational Wind Engineering (CWE 2010)
,
Chapel Hill, NC
,
May 23–27
, Article No. 222.
6.
Martinuzzi
,
R.
, and
Tropea
,
C.
,
1993
, “
The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow
,”
J. Fluid. Eng.
,
115
(
1
), pp.
85
85
. 10.1115/1.2910118
7.
Liu
,
Y. Z.
,
Ke
,
F.
, and
Sung
,
H. J.
,
2008
, “
Unsteady Separated and Reattaching Turbulent Flow Over a Two-Dimensional Square Rib
,”
J. Fluids Struct.
,
24
(
3
), pp.
366
381
. 10.1016/j.jfluidstructs.2007.08.009
8.
Benodekar
,
R. W.
,
Goddard
,
A. J. H.
,
Gosman
,
A. D.
, and
Issa
,
R. I.
,
1985
, “
Numerical Prediction of Turbulent Flow Over Surface-Mounted Ribs
,”
AIAA J.
,
23
(
3
), pp.
359
366
. 10.2514/3.8921
9.
Good
,
M. C.
, and
Joubert
,
P. N.
,
1968
, “
The Form Drag of Two-Dimensional Bluff-Plates Immersed in Turbulent Boundary Layers
,”
J. Fluid Mech.
,
31
(
3
), pp.
547
582
. 10.1017/S0022112068000327
10.
Acharya
,
S.
,
Dutta
,
S.
,
Myrum
,
T.
, and
Baker
,
R.
,
1994
, “
Turbulent Flow Past a Surface-Mounted Two-Dimensional Rib
,”
J. Fluid. Eng.
,
116
(
2
), pp.
238
246
. 10.1115/1.2910261
11.
Hwang
,
R. R.
,
Chow
,
Y. C.
, and
Peng
,
Y. F.
,
1999
, “
Numerical Study of Turbulent Flow Over Two-Dimensional Surface-Mounted Ribs in a Channel
,”
Int. J. Numer. Methods Fluids
,
31
(
4
), pp.
767
785
. 10.1002/(SICI)1097-0363(19991030)31:4<767::AID-FLD902>3.0.CO;2-A
12.
Ryu
,
D. N.
,
Choi
,
D. H.
, and
Patel
,
V. C.
,
2007
, “
Analysis of Turbulent Flow in Channels Roughened by Two-Dimensional Ribs and Three-Dimensional Blocks. Part I: Resistance
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
1098
1111
. 10.1016/j.ijheatfluidflow.2006.11.006
13.
Keshmiri
,
A.
,
2012
, “
Numerical Sensitivity Analysis of 3-and 2-Dimensional Rib-Roughened Channels
,”
Heat Mass Transfer
,
48
(
7
), pp.
1257
1271
. 10.1007/s00231-012-0968-z
14.
Young
,
D. L.
,
Eldho
,
T. I.
, and
Chang
,
J. T.
,
2006
, “
Large Eddy Simulation of Turbulent Flows in External Flow Field Using Three-Step FEM–BEM Model
,”
Eng. Anal. Boundary Elem.
,
30
(
7
), pp.
564
576
. 10.1016/j.enganabound.2006.02.004
15.
Crabb
,
D.
,
Durao
,
D.F.G.
, and
Whitelaw
,
J.H.
,
1977
, “
Velocity Characteristics in the Vicinity of a two-Dimensional Rib
,”
Proceeding of the 4th Brazilian Congress on Mechanical Engineering
,
Florianopolis, Brazil
,
December
, pp.
47
58
.
16.
Gu
,
H.
,
Liu
,
M.
,
Li
,
X.
,
Huang
,
H.
,
Wu
,
Y.
, and
Sun
,
F.
,
2018
, “
The Effect of a Low-Frequency Structure on Passive Scalar Transport in the Flow Over a Surface-Mounted Rib
,”
Flow, Turbul. Combust.
,
101
(
3
), pp.
719
740
. 10.1007/s10494-018-9929-z
17.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
18.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, Vol.
2
, pp.
172
180
,
DCW Industries
,
La Canada, CA
.
19.
Jones
,
W. P.
, and
Launder
,
B.
,
1973
, “
The Calculation of Low-Reynolds-Number Phenomena With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
16
(
6
), pp.
1119
1130
. 10.1016/0017-9310(73)90125-7
20.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
(
1
), pp.
625
632
.
21.
Ong
,
M. C.
,
Utnes
,
T.
,
Holmedal
,
L. E.
,
Myrhaug
,
D.
, and
Pettersen
,
B.
,
2010
, “
Numerical Simulation of Flow Around a Circular Cylinder Close to a Flat Seabed at High Reynolds Numbers Using a
kɛ
Model
,”
Coastal Eng.
,
57
(
10
), pp.
931
947
. 10.1016/j.coastaleng.2010.05.008
22.
Brørs
,
B.
,
1999
, “
Numerical Modeling of Flow and Scour at Pipelines
,”
J. Hydraul. Eng.
,
125
(
5
), pp.
511
523
. 10.1061/(ASCE)0733-9429(1999)125:5(511)
23.
Nielsen
,
A. W.
,
Liu
,
X.
,
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2013
, “
Flow and Bed Shear Stresses in Scour Protections Around a Pile in a Current
,”
Coastal Eng.
,
72
, pp.
20
38
. 10.1016/j.coastaleng.2012.09.001
You do not currently have access to this content.