Abstract

Reliable design and reanalysis of coastal and offshore structures require, among other things, characterization of extreme crest elevation corresponding to long return periods. Extreme crests typically correspond to focused wave events enhanced by wave–wave interactions of different orders—third-order, four-wave interactions dominating in deep water (Janssen, P. A. E. M., 2003, “Nonlinear Four-Wave Interactions and Freak Waves,” J. Phys. Oceanogr., 33(4), pp. 863–884). Higher-order spectral (HOS) analysis can be used to identify wave–wave interactions in time-series of water surface elevation; trispectral analysis is needed to detect third-order, four-wave interactions. Four-wave interactions between Fourier components can involve interactions of the type where f1 + f2 + f3 = f4 and where f1 + f2 = f3 + f4, resulting in two definitions of the trispectrum—the T- and V-trispectrum (with corresponding tricoherences), respectively. It is shown that the T-tricoherence is capable of detecting phase-locked four-wave interactions of the type f4 = f1 + f2 + f3 when these are simulated with simple sinusoids, but such interactions were not detected in HOS model simulations and field data. It is also found that high V-tricoherence levels are detected at frequencies at which four-wave interactions of the type f1 + f2 = f3 + f4 are expected, but these may simply indicate combinations of independent pairs of Fourier components that happen to satisfy the frequency relationship. Preliminary analysis shows that using a cumulant-based trispectrum (Kravtchenko-Berejnoi, V., Lefeuvre, F., Krasnosel'skikh, V. V., and Lagoutte, D., 1995, “On the Use of Tricoherent Analysis to Detect Nonlinear Wave–Wave Interactions,” Signal Process., 42(3), pp. 291–309) may improve identification of wave–wave interactions. These results highlight that caution needs to be exercised in interpreting trispectra in terms of specific four-wave interactions occurring in sea states and further research is needed to establish whether this is in fact possible in practice.

References

References
1.
Barber
,
N. F.
,
Ursell
,
F.
,
Darbyshire
,
J.
, and
Tucker
,
M. J.
,
1946
, “
A Frequency Analyser Used in the Study of Ocean Waves
,”
Nature
,
158
(
4010
), pp.
329
332
. 10.1038/158329a0
2.
Pierson
,
W. J.
, and
Marks
,
W.
,
1952
, “
The Power Spectrum Analysis of Ocean Wave Record
,”
Trans. Am. Geophys. Union
,
33
(
6
), pp.
834
844
. 10.1029/TR033i006p00834
3.
Tukey
,
J. W.
,
1949
, “
The Sampling Theory of Power Spectrum Estimates
,”
Symposium on Applications of Autocorrelation Analysis to Physical Problems, NAVEXOS-0-735
,
Office of Naval Research
.
4.
Brillinger
,
D.
,
1965
, “
An Introduction to Polyspectra
,”
Ann. Math. Stat.
,
36
(
5
), pp.
1351
1374
. 10.1214/aoms/1177699896
5.
Hasselmann
,
K.
,
Munk
,
W.
, and
McDonald
,
G.
,
1963
, “Bispectra of Ocean Waves,”
Time Series Analysis
,
M.
Rosenblatt
, ed.,
Wiley
,
NY
, pp.
125
139
.
6.
Elgar
,
S.
, and
Guza
,
R. T.
,
1985
, “
Observations of Bispectra of Shoaling Surface Gravity Waves
,”
J. Fluid Mech.
,
161
, pp.
425
448
. 10.1017/S0022112085003007
7.
Cherneva
,
Z.
, and
Guedes Soares
,
C.
,
2007
, “
Estimation of the Bispectra and Phase Distribution of Storm Sea States With Abnormal Waves
,”
Ocean Eng.
,
34
(
14–15
), pp.
2009
2010
. 10.1016/j.oceaneng.2007.02.010
8.
Toffoli
,
A.
,
Onorato
,
M.
,
Babanin
,
A. V.
,
Bitner-Gregersen
,
E.
,
Osborne
,
A. R.
, and
Monbaliu
,
J.
,
2007
, “
Second-order Theory and Set-up in Surface Gravity Waves: A Comparison With Experimental Data
,”
J. Phys. Ocean.
,
37
(
11
), pp.
2726
2739
. 10.1175/2007JPO3634.1
9.
Chandran
,
V.
,
Elgar
,
S.
, and
Vanhoff
,
B.
,
1994
, “
Statistics of Tricoherence
,”
IEEE Trans. Signal Process.
,
42
(
12
), pp.
3430
3440
. 10.1109/78.340777
10.
Elgar
,
S.
,
Herbers
,
T. H. C.
,
Chandran
,
V.
, and
Guza
,
R. T.
,
1995
, “
Higher-order Spectral Analysis of Nonlinear Ocean Surface Gravity Waves
,”
J. Geophys. Res.
,
100
(
C3
), pp.
4977
4983
. 10.1029/94JC02900
11.
Aubourg
,
Q.
,
Campagne
,
A.
,
Peureux
,
C.
,
Ardhuin
,
F.
,
Sommeria
,
J.
,
Viboud
,
S.
, and
Mordant
,
N.
,
2017
, “
Three-wave and Four-Wave Interactions in Gravity Wave Turbulence
,”
Phys. Rev. Fluids
,
2
(
11
), p.
114802
. 10.1103/PhysRevFluids.2.114802
12.
Haubrich
,
R. A.
,
1965
, “
Earth Noise, 5 to 500 Millicycles per Second 1
,”
J. Geophys. Res.
,
70
(
6
), pp.
1415
1427
. 10.1029/JZ070i006p01415
13.
Kim
,
Y. C.
, and
Powers
,
E. J.
,
1979
, “
Digital Bispectral Analysis and Its Applications to Nonlinear Wave Interactions
,”
IEEE Trans. Plasma Sci.
,
7
(
2
), pp.
120
131
. 10.1109/TPS.1979.4317207
14.
Hinich
,
M. J.
, and
Wolinsky
,
M.
,
2005
, “
Normalizing Bispectra
,”
J. Stat. Plann. Inference
,
130
(
1–2
), pp.
405
411
. 10.1016/j.jspi.2003.12.022
15.
Welch
,
P. D.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(
2
), pp.
70
73
. 10.1109/TAU.1967.1161901
16.
Harris
,
F. J.
,
1978
, “
On the Use of Windows for Harmonic Analysis With the Discrete Fourier Transform
,”
Proc. IEEE
,
66
(
1
), pp.
51
83
. 10.1109/PROC.1978.10837
17.
Ducrozet
,
G.
,
Bingham
,
H. B.
,
Engsig-Karup
,
A. P.
,
Bonnefoy
,
F.
, and
Ferrant
,
P.
,
2012
, “
A Comparative Study of Two Fast Nonlinear Free-Surface Water Wave Models
,”
Int. J. Numer. Methods Fluids
,
69
(
11
), pp.
1818
1834
. 10.1002/fld.2672
18.
Ducrozet
,
G.
,
Bonnefoy
,
F.
,
Le Touzé
,
D.
, and
Ferrant
,
P.
,
2016
, “
HOS-ocean: Open-Source Solver for Nonlinear Waves in Open Ocean Based on High-Order Spectral Method
,”
Comput. Phys. Commun.
,
203
, pp.
245
254
. 10.1016/j.cpc.2016.02.017
19.
Luxmoore
,
J. F.
,
Ilic
,
S.
, and
Mori
,
N.
,
2019
, “
On Kurtosis and Extreme Waves in Crossing Directional Seas: A Laboratory Experiment
,”
J. Fluid Mech.
,
876
, pp.
792
817
. 10.1017/jfm.2019.575
20.
Haver
,
S.
, and
Andersen
,
O. J.
,
2000
, “
Freak Waves—Rare Realizations of a Typical Population or Typical Realizations of a Rare Population?
,”
Proceedings of ISOPE’2000
,
Seattle
,
WA, June
, pp.
123
130
.
21.
Kravtchenko-Berejnoi
,
V.
,
Lefeuvre
,
F.
,
Krasnossel’skikh
,
V.
, and
Lagoutte
,
D.
,
1995
, “
On the Use of Tricoherent Analysis to Detect Non-Linear Wave-Wave Interactions
,”
Signal Process.
,
42
(
3
), pp.
291
309
. 10.1016/0165-1684(94)00136-N
22.
Dalle Molle
,
J. W.
, and
Hinich
,
M. J.
,
1995
, “
Trispectral Analysis of Stationary Random Time Series
,”
J. Acoust. Soc. Am.
,
97
(
5
), pp.
2963
2978
. 10.1121/1.411860
23.
Ewans
,
K. C.
, and
Buchner
,
B.
,
2008
, “
Wavelet Analysis of an Extreme Wave in a Model Basin
,”
Proceedings of 27th International Conference on Offshore Mechanics and Arctic Engineering
,
Estoril, Portugal
,
June 15–19
.
24.
Dong
,
G.
,
Ma
,
Y.
,
Perlin
,
M.
,
Ma
,
X.
,
Yu
,
B.
, and
Xu
,
J.
,
2008
, “
Experimental Study of Wave-Wave Nonlinear Interactions Using the Wavelet-Based Bicoherence
,”
Coastal Eng.
,
55
(
9
), pp.
741
752
. 10.1016/j.coastaleng.2008.02.015
25.
van Milligen
,
B. P.
,
Sánchez
,
E.
,
Estrada
,
T.
,
Hidalgo
,
C.
, and
Brañas
,
B.
,
1995
, “
Wavelet Bicoherence: A New Turbulence Analysis Tool
,”
Phys. Plasmas
,
2
(
8
), pp.
3017
3032
. 10.1063/1.871199
26.
Larsen
,
Y.
, and
Hanssen
,
A.
,
2000
, “
Wavelet-polyspectra: Analysis of Non-Stationary and Non-Gaussian/Non-Linear Signals
,”
Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing
,
Pocono Manor
,
Aug. 14–16
, pp.
539
543
.
27.
Schulte
,
J. A.
,
2016
, “
Wavelet Analysis for Non-Stationary, Nonlinear Time Series
,”
Nonlinear Process. Geophys.
,
23
(
4
), pp.
257
267
. 10.5194/npg-23-257-2016
28.
Osborne
,
A. R.
,
2010
,
Nonlinear Ocean Waves and the Inverse Scattering Transform
,
Academic Press
,
Boston
.
29.
Osborne
,
A. R.
,
Resio
,
D.
,
Costa
,
A.
,
Ponce de Leon
,
S.
, and
Chirivi
,
E.
,
2018
, “
Highly Nonlinear Wind Waves in Currituck Sound: Dense Breather Turbulence in Random Ocean Waves
,”
Ocean Dyn.
, pp.
187
219
. 10.1007/s10236-018-1232-y
You do not currently have access to this content.