Abstract

Traditionally, ship maneuvering is analyzed under calm water condition. In a more realistic scenario, such as a ship sailing in waves, the importance of taking the wave effects into account should be stressed. In this context, this paper proposes a hybrid method for predicting ship maneuverability in regular waves by combining a potential flow theory based panel method and a Reynolds-averaged Navier–Stokes (RANS)-based computational fluid dynamics method. The mean wave drift forces are evaluated by applying a three-dimensional time-domain higher-order Rankine panel method, which takes the effects of ship's forward speed and lateral speed into consideration. The hull-related hydrodynamic derivatives in the equations of ship maneuvering motion are determined by using a RANS solver based on the double-body model. Then, the two-time scale method is applied to predict ship maneuvering in regular waves by integrating the seakeeping model in a three degrees-of-freedom MMG model for ship maneuvering motion. The numerical results of a laterally drifting S175 container ship, including the wave-induced motions, wave drift forces, and turning trajectories in regular waves, are presented and compared with the available experimental data in literature. The results show that the proposed hybrid method can be used for qualitatively predicting ship maneuvering behavior in regular waves.

References

References
1.
Ueno
,
M.
,
Nimura
,
T.
, and
Miyazaki
,
H.
,
2003
,
Experimental Study on Manoeuvring Motion of a Ship in Waves
,
International Conference on Marine Simulation and Ship Manoeuvrability, MARSIM’03
,
Kanazawa, Japan
,
Aug. 25–28
, pp.
664
670
.
2.
Lee
,
S.
,
Hwang
,
S.
,
Yun
,
S. W.
,
Rhee
,
K. P.
, and
Seong
,
W. J.
,
2009
,
An Experimental Study of a Ship Manoeuvrability in Regular Waves
,
International Conference on Marine Simulation and Ship Manoeuvrability, MARSIM’09
,
Panama
,
Aug. 17–20
, pp.
518
527
.
3.
Yasukawa
,
H.
,
Hirata
,
N.
,
Yonemasu
,
I.
,
Terada
,
D.
, and
Matsuda
,
A.
,
2015
,
Maneuvering Simulation of a KVLCC2 Tanker in Irregular Waves
,
International Conference on Marine Simulation and Ship Manoeuvrability, MARSIM’2015
,
Newcastle, UK
,
Sept. 7–11
.
4.
SHOPERA (2013–2016), http://www.shopera.org.
5.
SHOPERA Benchmark Study (2015–2016), http://www.shopera.org/benchmark-study/.
6.
Papanikolaou
,
A.
,
Bitner-Gregersen
,
E.
,
Devalapalli
,
R.
,
el Moctar
,
O.
,
Guedes Soares
,
C.
,
Shigunov
,
V.
,
Sprenger
,
F.
, and
Zaraphonitis
,
G.
,
2016
, “
Energy Efficient Safe Ship Operation (SHOPERA)
,”
Transport. Res. Proc.
,
14
, pp.
820
829
. 10.1016/j.trpro.2016.05.030
7.
Shigunov
,
V.
,
el Moctar
,
O.
,
Papanikolaou
,
A.
,
Potthoff
,
R.
, and
Liu
,
S.
,
2018
,
International Benchmark Study on Numerical Simulation Methods for Prediction of Manoeuvrability of Ships in Waves
,
Ocean Eng.
,
165
, pp.
365
385
. 10.1016/j.oceaneng.2018.07.031
8.
Sprenger
,
F.
,
Maron
,
A.
,
Delefortrie
,
G.
,
Van Zwijnsvoorde
,
T.
,
Cura-Hochbaum
,
A.
,
Lengwinat
,
A.
, and
Papanikolaou
,
A.
,
2017
,
Experimental Studies on Seakeeping and Maneuverability of Ships in Adverse Weather Conditions
,
J. Ship Res.
,
61
(
3
), pp.
131
152
. 10.5957/JOSR.170002
9.
Kim
,
D. J.
,
Yun
,
K.
,
Park
,
J. Y.
,
Yeo
,
D. J.
, and
Kim
,
Y. G.
,
2019
,
Experimental Investigation on Turning Characteristics of KVLCC2 Tanker in Regular Waves
,
Ocean Eng.
,
175
, pp.
197
206
. 10.1016/j.oceaneng.2019.02.011
10.
Mousaviraad
,
M.
,
Bhushan
,
S.
, and
Stern
,
F.
,
2012
,
CFD Prediction of Free-Running SES/ACV Deep and Shallow Water Maneuvering and Course-Keeping in Calm Water and Waves
,
International Conference on Marine Simulation and Ship Manoeuvrability, MARSIM’2012
,
Singapore
,
Apr. 23–27
.
11.
Cura-Hochbaum
,
A.
, and
Uharek
,
S.
,
2016
,
Prediction of Ship Manoeuvrability in Waves Based on RANS Simulations
,
31st Symposium on Naval Hydrodynamics
,
Monterey, CA
,
Sept. 11–16
.
12.
Uharek
,
S.
, and
Cura-Hochbaum
,
A.
,
2018
,
Power Prediction for Safe Manoeuvring in Waves
,
32nd Symposium on Naval Hydrodynamics
,
Hamburg, Germany
.
13.
Wang
,
J. H.
,
Zou
,
L.
, and
Wan
,
D. C.
,
2017
,
CFD Simulations of Free Running Ship Under Course Keeping Control
,
Ocean Eng.
,
141
, pp.
450
464
. 10.1016/j.oceaneng.2017.06.052
14.
Wang
,
J. H.
,
Zou
,
L.
, and
Wan
,
D. C.
,
2018
,
Numerical Simulations of Zigzag Maneuver of Free Running Ship in Waves by RANS-Overset Grid Method
,
Ocean Eng.
,
162
, pp.
55
79
. 10.1016/j.oceaneng.2018.05.021
15.
Skejic
,
R.
,
2013
,
Ships Maneuvering Simulations in Seaway—How Close Are we to Reality?
International Workshop on Next Generation Nautical Traffic Models
,
Delft, The Netherlands
,
June 5–7
.
16.
Tello Ruiz
,
M.
,
Delefortrie
,
G.
, and
Vantorre
,
M.
,
2016
,
Induced Wave Forces on a Ship Manoeuvring in Coastal Waves
,
Ocean Eng.
,
121
, pp.
472
491
. 10.1016/j.oceaneng.2016.06.001
17.
Tello Ruiz
,
M.
,
Mansuy
,
M.
,
Delefortrie
,
G.
, and
Vantorre
,
M.
,
2019
,
Modelling the Manoeuvring Behaviour of an ULCS in Coastal Waves
,
Ocean Eng.
,
172
, pp.
213
233
. 10.1016/j.oceaneng.2018.11.046
18.
Lin
,
W. M.
,
Zhang
,
S. G.
,
Weems
,
K.
, and
Liut
,
D.
,
2006
,
Numerical Simulations of Ship Maneuvering in Waves
,
26th Symposium on Naval Hydrodynamics
,
Rome, Italy
,
Sept. 17–22
.
19.
Yen
,
T. G.
,
Zhang
,
S. G.
,
Weems
,
K.
, and
Lin
,
W. M.
,
2010
,
Development and Validation of Numerical Simulations for Ship Maneuvering in Calm Water and in Waves
,
28th Symposium on Naval Hydrodynamics
,
Pasadena, CA
,
Sept. 12–17
.
20.
Bailey
,
P. A.
,
Price
,
W. G.
, and
Temarel
,
P.
,
1997
,
A Unified Mathematical Model Describing the Maneuvering of a Ship Travelling in a Seaway
,
Trans. Royal Inst. Naval Arch.
,
140
, pp.
131
149
.
21.
Fossen
,
T. I.
,
2005
,
A Nonlinear Unified State-Space Model for Ship Maneuvering and Control in a Seaway
,
Int. J. Bifurcation Chaos
,
15
(
9
), pp.
2717
2746
. 10.1142/S0218127405013691
22.
Sutulo
,
S.
and
Guedes Soares
,
C.
,
2008
,
A Generalized Strip Theory for Curvilinear Motion in Waves
,
27th International Conference on Offshore Mechanics and Arctic Engineering
,
Estoril, Portugal
, Vol.
6
, pp.
359
368
.
23.
Schoop-Zipfel
,
J.
, and
Abdel-Maksoud
,
M.
,
2011
,
A Numerical Model to Determine Ship Maneuvering Motion in Regular Waves
,
International Conference on Computational Methods in Marine Engineering (MARINE)
,
Lisbon, Portugal
, Sept. 28–30, pp.
339
350
.
24.
Subramanian
,
R.
, and
Beck
,
R. F.
,
2015
,
A Time-Domain Strip Theory Approach to Maneuvering in a Seaway
,
Ocean Eng.
,
104
, pp.
107
118
. 10.1016/j.oceaneng.2015.04.071
25.
Skejic
,
R.
, and
Faltinsen
,
O. M.
,
2008
,
A Unified Seakeeping and Maneuvering Analysis of Ships in Regular Waves
,
J. Mar. Sci. Technol.
,
13
(
4
), pp.
371
394
. 10.1007/s00773-008-0025-2
26.
Yasukawa
,
H.
,
Hirata
,
N.
,
Matsumoto
,
A.
,
Kuroiwa
,
R.
, and
Mizokami
,
S.
,
2019
,
Evaluations of Wave-Induced Steady Forces and Turning Motion of a Full Hull Ship in Waves
,
J. Mar. Sci. Technol.
,
24
(
1
), pp.
1
15
. 10.1007/s00773-018-0537-3
27.
Seo
,
M. G.
, and
Kim
,
Y.
,
2011
,
Numerical Analysis on Ship Maneuvering Coupled With Ship Motion in Waves
,
Ocean Eng.
,
38
(
17–18
), pp.
1934
1945
. 10.1016/j.oceaneng.2011.09.023
28.
Zhang
,
W.
,
Zou
,
Z. J.
, and
Deng
,
D. H.
,
2017
,
A Study on Prediction of Ship Maneuvering in Regular Waves
,
Ocean Eng.
,
137
, pp.
367
381
. 10.1016/j.oceaneng.2017.03.046
29.
Chillcce
,
G.
, and
el Moctar
,
O.
,
2018
,
A Numerical Method for Manoeuvring Simulation in Regular Waves
,
Ocean Eng.
,
170
, pp.
434
444
. 10.1016/j.oceaneng.2018.09.047
30.
Seo
,
M. G.
,
Nam
,
B. W.
, and
Kim
,
Y. G.
,
2020
,
Numerical Evaluation of Ship Turning Performance in Regular and Irregular Waves
,
ASME J. Offshore Mech. Arct. Eng.
,
142
(
2
),
021202
. 10.1115/1.4045095
31.
Yasukawa
,
H.
, and
Yoshimura
,
Y.
,
2015
,
Introduction of MMG Standard Method for Ship Maneuvering Predictions
,
J. Mar. Sci. Technol.
,
20
(
1
), pp.
37
52
. 10.1007/s00773-014-0293-y
32.
Huang
,
Y.
,
1997
,
Nonlinear Ship Motions by a Rankine Panel Method
,
Ph.D. thesis
,
Massachusetts Institute of Technology
,
Cambridge
.
33.
Adnan
,
F. A.
, and
Yasukawa
,
H.
,
2007
,
Strip Method for a Laterally Drifting Ship in Waves
,
J. Mar. Sci. Technol.
,
12
(
3
), pp.
139
149
. 10.1007/s00773-007-0224-2
34.
Yasukawa
,
H.
,
Adnan
,
F. A.
, and
Nishi
,
K.
,
2010
,
Wave-induced Motions on a Laterally Drifting Ship
,
Ship Technol. Res.
,
57
(
2
), pp.
84
98
. 10.1179/str.2010.57.2.001
35.
Kim
,
K. H.
, and
Kim
,
Y.
,
2011
,
Numerical Study on Added Resistance of Ships by Using a Time-Domain Rankine Panel Method
,
Ocean Eng.
,
38
(
13
), pp.
1357
1367
. 10.1016/j.oceaneng.2011.04.008
36.
Joncquez
,
S. A. G.
,
2009
,
Second-order Forces and Moments Acting on Ships in Waves
,
Ph.D. thesis
,
Technical University of Denmark
,
Kgs. Lyngby, Denmark
.
37.
Mei
,
T. L.
,
Zhang
,
T.
,
Candries
,
M.
,
Lataire
,
E.
, and
Zou
,
Z. J.
,
2020
,
Comparative Study on Ship Motions in Waves Based on Two Time Domain Panel Methods
,
Eng. Anal. Bound. Elem.
,
111
, pp.
9
21
. 10.1016/j.enganabound.2019.10.013
38.
Son
,
K.
, and
Nomoto
,
K.
,
1981
,
On the Coupled Motion of Steering and Rolling of a High Speed Container Ship
,
J. Soc. Nav. Archit. Jpn.
,
1981
(
150
), pp.
232
244
. 10.2534/jjasnaoe1968.1981.150_232
39.
Yasukawa
,
H.
, and
Nakayama
,
Y.
,
2009
,
6-DOF Motion Simulations of a Turning Ship in Regular Waves
,
International Conference on Marine Simulation and Ship Manoeuvrability, MARSIM’09
,
Panama
,
Aug. 17–20
, pp.
508
517
.
40.
Takahashi
,
T.
,
1988
,
A Practical Prediction Method of Added Resistance of a Ship in Waves and the Direction of Its Application to Hull Form Design
,
Trans. West-Japan Soc. Naval Archit.
,
75
, pp.
75
95
.
41.
Nakamura
,
S.
, and
Naito
,
S.
,
1977
,
Propulsive Performance of a Container Ship in Waves
,
J. Soc. Nav. Archit. Jpn.
,
15
, pp.
24
48
.
42.
Yasukawa
,
H.
,
2006
.
Simulations of Ship Maneuvering in Waves (1st Report: Turning Motion)
,
J. Jpn. Soc. Naval Archit. Ocean Eng.
,
4
, pp.
127
136
. 10.2534/jjasnaoe.4.127
You do not currently have access to this content.