Abstract

To obtain an optimum connection parameter combination for modular floating structures of multiple functions, an integrated methodology for the assessment and optimization is proposed in the present work, out of consideration for the balance between the functional performance and economic effect. To illustrate the whole process, two types of modular floating structures, i.e., a modular wave energy converter (WEC) and a modular mobile offshore base (MOB), are taken as the cases. For the two cases, connection configurations are first specified based on structural functions as well as environment conditions; then, quantified measurements are established and studied, based on which the following process of selection of optimization algorithms is done and the optimum solutions are obtained, making up a whole process of specification of the connection parameter combination for modular floating structures. The proposed methodology possesses the potential of offering guidance for the phase of preliminary design of connection structures of modular floating structures.

References

References
1.
Suzuki
,
H.
,
2005
, “
Overview of Megafloat: Concept, Design Criteria, Analysis, and Design
,”
Mar. Struct.
,
18
(
2
), pp.
111
132
. 10.1016/j.marstruc.2005.07.006
2.
Mcallister
,
K. R.
,
1997
, “
Mobile Offshore Bases—An Overview of Recent Research
,”
Mar. Sci. Technol.
,
2
, pp.
173
181
. 10.1007/BF02489808
3.
Manabe
,
H.
,
Uehiro
,
T.
,
Utiyama
,
M.
,
Esaki
,
H.
,
Kinoshita
,
T.
,
Takagi
,
K.
,
Okamura
,
H.
, and
Satou
,
M.
,
2008
, “
Development of the Floating Structure for the Sailing-Type Offshore Wind Farm
,”
OCEANS 2008-MTS/IEEE Kobe Techno-Ocean
,
Kobe, Japan
,
Apr. 8–11
, pp.
1
4
.
4.
Callebaut
,
V.
,
2015
, “Lilypad: Floating Ecopolis for Climatical Refugees,”
Large Floating Structures
,
Springer
,
New York
, pp.
303
327
.
5.
Lamas-Pardo
,
M.
,
Iglesias
,
G.
, and
Carral
,
L.
,
2015
, “
A Review of Very Large Floating Structures (VLFS) for Coastal and Offshore Uses
,”
Ocean Eng.
,
109
, pp.
677
690
. 10.1016/j.oceaneng.2015.09.012
6.
Michailides
,
C.
,
Loukogeorgaki
,
E.
, and
Angelides
,
D. C.
,
2013
, “
Response Analysis and Optimum Configuration of a Modular Floating Structure With Flexible Connectors
,”
Appl. Ocean Res.
,
43
, pp.
112
130
. 10.1016/j.apor.2013.07.007
7.
Newman
,
J. N.
,
2005
, “
Efficient Hydrodynamic Analysis of Very Large Floating Structures
,”
Mar. Struct.
,
18
(
2
), pp.
169
180
. 10.1016/j.marstruc.2005.07.003
8.
Wu
,
Y.
,
Wang
,
D.
,
Riggs
,
H. R.
, and
Cengiz Ertekin
,
R.
,
1993
, “
Composite Singularity Distribution Method With Application to Hydroelasticity
,”
Mar. Struct.
,
6
(
2–3
), pp.
143
163
. 10.1016/0951-8339(93)90017-W
9.
Wang
,
D.
,
Riggs
,
H. R.
, and
Ertekin
,
R. C.
,
1991
, “
Three-Dimensional Hydroelastic Response of a Very Large Floating Structure
,”
Int. J. Offshore Polar Eng.
,
1
(
4
), pp.
307
316
.
10.
Newman
,
J. N.
, and
Lee
,
C.-H.
,
2002
, “
Boundary-Element Methods in Offshore Structure Analysis
,”
ASME J. Offshore Mech. Arct. Eng.
,
124
(
2
), p.
81
–89. 10.1115/1.1464561
11.
Palo
,
P.
,
2005
, “
Mobile Offshore Base: Hydrodynamic Advancements and Remaining Challenges
,”
Mar. Struct.
,
18
(
2
), pp.
133
147
. 10.1016/j.marstruc.2005.07.007
12.
Newman
,
J. N.
,
1994
, “
Wave Effects on Deformable Bodies
,”
Appl. Ocean Res.
,
16
(
1
), pp.
47
59
. 10.1016/0141-1187(94)90013-2
13.
Zheng
,
S.
,
Zhang
,
Y. H.
,
Zhang
,
Y.
, and
Sheng
,
W.
,
2015
, “
Numerical Study on the Dynamics of a Two-Raft Wave Energy Conversion Device
,”
J. Fluids Struct.
,
58
, pp.
271
290
. 10.1016/j.jfluidstructs.2015.07.008
14.
MOB Project Team
,
2000
, “
Mobile Offshore Base (MOB) Science and Technology Program
,” Final Report, Naval Facilities Engineering Service Center, Port Hueneme, CA.
15.
Rognaas
,
G.
,
Xu
,
J.
,
Lindseth
,
S.
, and
Rosendahl
,
F.
,
2001
, “
Mobile Offshore Base Concepts Concrete Hull and Steel Topsides
,”
Mar. Struct.
,
14
(
1–2
), pp.
5
23
. 10.1016/S0951-8339(00)00019-8
16.
Derstine
,
M. S.
, and
Brown
,
R. T.
,
2000
, “
Compliant Connector Concept for the Mobile Offshore Base
,”
Mar. Struct.
,
13
(
4–5
), pp.
399
419
. 10.1016/S0951-8339(00)00017-4
17.
Zhang
,
H.
,
Xu
,
D.
,
Zhao
,
H.
,
Xia
,
S.
, and
Wu
,
Y.
,
2018
, “
Energy Extraction of Wave Energy Converters Embedded in a Very Large Modularized Floating Platform
,”
Energy
,
158
(
June
), pp.
317
329
. 10.1016/j.energy.2018.06.031
18.
Riggs
,
H. R.
,
Ertekin
,
R. C.
, and
Mills
,
T. R. J.
,
2000
, “
Comparative Study of RMFC and FEA Models for the Wave-Induced Response of a MOB
,”
Mar. Struct.
,
13
(
4–5
), pp.
217
232
. 10.1016/S0951-8339(00)00029-0
19.
Lee
,
C.-H.
, and
Newman
,
J. N.
,
2000
, “
An Assessment of Hydroelasticity for Very Large Hinged Vessels
,”
J. Fluids Struct.
,
14
(
7
), pp.
957
970
. 10.1006/jfls.2000.0305
20.
Riggs
,
H. R.
,
Ertekin
,
R. C.
, and
Mills
,
T. R. J.
,
1998
, “
Wave-Induced Response of a 5-Module Mobile Offshore Base
,”
17th International Conference on Offshore Mechanics and Arctic Engineering
,
Lisbon, Portugal
,
July 5–9
, pp.
1
10
.
21.
Riggs
,
H. R.
,
Ertekin
,
R. C.
, and
Mills
,
T. R. J.
,
1999
, “
Characteristics of the Wave Response of Mobile Offshore Bases
,”
Proceedings of 18th International Conference on Offshore Mechanics and Arctic Engineering
,
St. Johns, Newfoundland
,
July 11–16
, pp.
1
9
.
22.
Riggs
,
H. R.
,
Ertekin
,
R. C.
, and
Mills
,
T. R. J.
,
1998
, “
Impact of Connector Stiffness on the Response of a Multi-Module Mobile Offshore Base
,”
The Eighth International Offshore and Polar Engineering Conference
,
Montreal, Canada
,
May 24–29
, pp.
200
207
.
23.
Bhattacharya
,
B.
,
Basu
,
R.
, and
Ma
,
K. T.
,
2001
, “
Developing Target Reliability for Novel Structures: The Case of the Mobile Offshore Base
,”
Mar. Struct.
,
14
(
1–2
), pp.
37
58
. 10.1016/S0951-8339(00)00024-1
24.
Yu
,
L.
,
Li
,
R.
, and
Shu
,
Z.
,
2004
, “
A Numerical and Experimental Study on Dynamic Responses of MOB Connectors
,”
The Fourteenth International Offshore and Polar Engineering Conference
,
Toulon, France
,
May 23–28
, pp.
636
643
.
25.
Shi
,
Q. J.
,
Xu
,
D. L.
,
Zhang
,
H. C.
,
Zhao
,
H.
, and
Wu
,
Y.
,
2018
, “
Optimized Stiffness Combination of a Flexible-Base Hinged Connector for Very Large Floating Structures
,”
Mar. Struct.
,
60
, pp.
151
164
. 10.1016/j.marstruc.2018.03.014
26.
Zhang
,
Y.
, and
Liu
,
H.
,
2018
, “
Impact of Connection Properties on Dynamic Response of Modular Floating Structures
,”
ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
,
Madrid, Spain
,
June 17–22
, pp.
1
11
.
27.
Newman
,
J. N.
,
1979
, “
Absorption of Wave Energy by Elongated Bodies
,”
Appl. Ocean Res.
,
1
(
4
), pp.
189
196
. 10.1016/0141-1187(79)90026-9
28.
Henderson
,
R.
,
2006
, “
Design, Simulation, and Testing of a Novel Hydraulic Power Take-off System for the Pelamis Wave Energy Converter
,”
Renew. Energy
,
31
(
2
), pp.
271
283
. 10.1016/j.renene.2005.08.021
29.
Diamantoulaki
,
I.
, and
Angelides
,
D. C.
,
2010
, “
Analysis of Performance of Hinged Floating Breakwaters
,”
Eng. Struct.
,
32
(
8
), pp.
2407
2423
. 10.1016/j.engstruct.2010.04.015
30.
Ruol
,
P.
,
Zanuttigh
,
B.
,
Martinelli
,
L.
,
Kofoed
,
P.
, and
Frigaard
,
P.
,
2011
, “
Near-Shore Floating Wave Energy Converters: Applications for Coastal Protection
,”
Coast. Eng. Proc.
,
1
(
32
), p.
61
. 10.9753/icce.v32.structures.61
31.
Michailides
,
C.
, and
Angelides
,
D. C.
,
2012
, “
Modeling of Energy Extraction and Behavior of a Flexible Floating Breakwater
,”
Appl. Ocean Res.
,
35
, pp.
77
94
. 10.1016/j.apor.2011.11.004
32.
Zheng
,
S.
,
Zhang
,
Y.
, and
Sheng
,
W.
,
2016
, “
Maximum Theoretical Power Absorption of Connected Floating Bodies Under Motion Constraints
,”
Appl. Ocean Res.
,
58
, pp.
95
103
. 10.1016/j.apor.2016.03.015
33.
Zheng
,
S.
,
Zhang
,
Y.
, and
Sheng
,
W.
,
2016
, “
Maximum Wave Energy Conversion by Two Interconnected Floaters
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032004
. 10.1115/1.4032793
34.
Faltinsen
,
O. M.
,
1990
,
Sea Loads on Ships and Ocean Structures
,
Cambridge University
,
Cambridge, England
.
35.
Folley
,
M.
, and
Whittaker
,
T.
,
2010
, “
Spectral Modelling of Wave Energy Converters
,”
Coast. Eng.
,
57
(
10
), pp.
892
897
. 10.1016/j.coastaleng.2010.05.007
36.
El-Bakry
,
A. S.
,
Tapia
,
R. A.
,
Tsuchiya
,
T.
, and
Zhang
,
Y.
,
1996
, “
On the Formulation and Theory of the Newton Interior-Point Method for Nonlinear Programming
,”
J. Optim. Theory Appl.
,
89
(
3
), pp.
507
541
. 10.1007/BF02275347
37.
Goldberg
,
D. E.
,
1989
,
Genetics Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
38.
Miyamoto
,
H. K.
, and
Gilani
,
A. S. J.
,
2013
, “
Seismic Viscous Dampers: A Cost-Effective Solution With Enhanced Performance for Retrofit and New Construction
,”
Proceedings of the 13th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures
,
Sendai, Japan
,
Sept. 24–27
, pp.
1
9
.
39.
DNV GL
,
2015
, Offshore Standard: Position Mooring, DNVGL-OS-E301.
40.
Nelson
,
J. H.
, and
Griffin
,
G. M.
,
1963
,
United States Navy Pilot-Controlled Landing Procedure and Associated Equipment
,
Advisory Group for Aeronautical Research and Development
,
Paris (France)
.
41.
Durand
,
T. S.
, and
Teper
,
G. L.
,
1964
,
An Analysis of Terminal Flight Path Control in Carrier Landing
,
Systems Technology Inc
,
Inglewood, CA
.
42.
Deep
,
K.
,
Singh
,
K. P.
,
Kansal
,
M. L.
, and
Mohan
,
C.
,
2009
, “
A Real Coded Genetic Algorithm for Solving Integer and Mixed Integer Optimization Problems
,”
Appl. Math. Comput.
,
212
(
2
), pp.
505
518
.
You do not currently have access to this content.