Abstract

This article presents numerical studies on the drag evolution of an axisymmetric body of revolution with microgrooves using Reynolds stress model-based computational fluid dynamics simulations. Experimental data of drag evolution along the non-grooved body were used to validate the numerical model predictions. After validation of the model predictions, a series of numerical simulations were performed to study the effect of toroidal grooving of the axisymmetric body on the drag evolution by varying the depth to the surface radius of the grooves at different Reynolds numbers. A maximum drag reduction of 43% was achieved with such effort. This was possible because of the drastic reduction of turbulent shear stress in the boundary layer, which has a direct relationship with the skin friction drag evolution along the body.

References

1.
Panda
,
J. P.
,
Mitra
,
A.
, and
Warrior
,
H. V.
,
2021
, “
A Review on the Hydrodynamic Characteristics of Autonomous Underwater Vehicles
,”
Proc. Inst. Mech. Eng., Part M: J. Eng. Maritime Environ.
,
235
(
1
), pp.
15
29
.
2.
Sahoo
,
A.
,
Dwivedy
,
S. K.
, and
Robi
,
P.
,
2019
, “
Advancements in the Field of Autonomous Underwater Vehicle
,”
Ocean. Eng.
,
181
, pp.
145
160
.
3.
Mitra
,
A.
,
Panda
,
J. P.
, and
Warrior
,
H. V.
,
2020
, “
Experimental and Numerical Investigation of the Hydrodynamic Characteristics of Autonomous Underwater Vehicles Over Sea-Beds With Complex Topography
,”
Ocean. Eng.
,
198
, p.
106978
.
4.
Mitra
,
A.
,
Panda
,
J.
, and
Warrior
,
H.
,
2019
, “
The Effects of Free Stream Turbulence on the Hydrodynamic Characteristics of An Auv Hull Form
,”
Ocean. Eng.
,
174
, pp.
148
158
.
5.
Choi
,
J.
,
Jeon
,
W.-P.
, and
Choi
,
H.
,
2006
, “
Mechanism of Drag Reduction by Dimples on a Sphere
,”
Phys. Fluids.
,
18
(
4
), p.
041702
.
6.
Tay
,
C.
,
Chew
,
Y.
,
Khoo
,
B.
, and
Zhao
,
J.
,
2014
, “
Development of Flow Structures Over Dimples
,”
Exp. Therm. Fluid. Sci.
,
52
, pp.
278
287
.
7.
Abderrahaman-Elena
,
N.
, and
García-Mayoral
,
R.
,
2017
, “
Analysis of Anisotropically Permeable Surfaces for Turbulent Drag Reduction
,”
Phys. Rev. Fluids
,
2
(
11
), p.
114609
.
8.
Itoh
,
M.
,
Tamano
,
S.
,
Iguchi
,
R.
,
Yokota
,
K.
,
Akino
,
N.
,
Hino
,
R.
, and
Kubo
,
S.
,
2006
, “
Turbulent Drag Reduction by the Seal Fur Surface
,”
Phys. Fluids.
,
18
(
6
), p.
065102
.
9.
Saric
,
W. S.
,
West
,
D. E.
,
Tufts
,
M. W.
, and
Reed
,
H. L.
,
2019
, “
Experiments on Discrete Roughness Element Technology for Swept-wing Laminar Flow Control
,”
AIAA. J.
,
57
(
2
), pp.
641
654
.
10.
Frohnapfel
,
B.
,
Jovanović
,
J.
, and
Delgado
,
A.
,
2007
, “
Experimental Investigations of Turbulent Drag Reduction by Surface-Embedded Grooves
,”
J. Fluid. Mech.
,
590
, pp.
107
116
.
11.
Krieger
,
V.
,
Perić
,
R.
,
Jovanović
,
J.
,
Lienhart
,
H.
, and
Delgado
,
A.
,
2018
, “
Toward Design of the Antiturbulence Surface Exhibiting Maximum Drag Reduction Effect
,”
J. Fluid. Mech.
,
850
, pp.
262
303
.
12.
Groves
,
N. C.
,
Huang
,
T. T.
, and
Chang
,
M. S.
,
1989
,
Geometric Characteristics of Darpa (Defense Advanced Research Projects Agency) Suboff Models (DTRC model numbers 5470 and 5471)
. Technical Report, David Taylor Research Center, Bethesda, MD, Ship Hydromechanics Dept.
13.
Jagadeesh
,
P.
,
Murali
,
K.
, and
Idichandy
,
V.
,
2009
, “
Experimental Investigation of Hydrodynamic Force Coefficients Over AUV Hull Form
,”
Ocean. Eng.
,
36
(
1
), pp.
113
118
.
14.
Wu
,
C.-s.
,
He
,
S.-l.
,
Zhu
,
D.-x.
, and
Gu
,
M.
,
2006
, “
Numerical Simulation of Microbubble Flow Around An Axisymmetric Body
,”
J. Hydrod.
,
18
(
1
), pp.
215
220
.
15.
Shereena
,
S.
,
Vengadesan
,
S.
,
Idichandy
,
V.
, and
Bhattacharyya
,
S.
,
2013
, “
CFD Study of Drag Reduction in Axisymmetric Underwater Vehicles Using Air Jets
,”
Eng. Appl. Comput. Fluid Mech.
,
7
(
2
), pp.
193
209
.
16.
Meng
,
L.
,
Yang
,
L.
,
Su
,
T.-C.
, and
Gu
,
H.
,
2019
, “
Study on the Influence of Porous Material on Underwater Vehicle’s Hydrodynamic Characteristics
,”
Ocean. Eng.
,
191
, p.
106528
.
17.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modelling the Pressure–Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach
,”
J. Fluid. Mech.
,
227
, pp.
245
272
.
18.
Huang
,
T.
,
Santelli
,
N.
, and
Belt
,
G.
,
1978
, “
Stern Boundary-Layer Flow on Axisymmetric Bodies
,” Twelfth Symposium on Naval Hydrodynamics, pp.
125
167
.
19.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2010
, “
Pressure-Sstrain Correlation Modeling: Towards Achieving Consistency With Rapid Distortion Theory
,”
Flow, Turbul. Combust.
,
85
(
3-4
), pp.
593
619
.
20.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2013
, “
Intercomponent Energy Transfer in Incompressible Homogeneous Turbulence: Multi-Point Physics and Amenability to One-Point Closures
,”
J. Fluid. Mech.
,
731
, pp.
639
681
.
21.
Mishra
,
A. A.
,
2014
, “
The Art and Science in Modeling the Pressure-Velocity Interactions
,” PhD Thesis,
Texas A&M University
,
College Station, TX, August
.
22.
Panda
,
J.
, and
Warrior
,
H.
,
2018
, “
A Representation Theory-Based Model for the Rapid Pressure Strain Correlation of Turbulence
,”
ASME J. Fluid. Eng.
,
140
(
8
), p.
081101
.
23.
Panda
,
J.
,
Warrior
,
H.
,
Maity
,
S.
,
Mitra
,
A.
, and
Sasmal
,
K.
,
2017
, “
An Improved Model Including Length Scale Anisotropy for the Pressure Strain Correlation of Turbulence
,”
ASME J. Fluids Eng.
,
139
(
4
), p.
044503
.
24.
Panda
,
J.
,
Mitra
,
A.
,
Joshi
,
A.
, and
Warrior
,
H.
,
2018
, “
Experimental and Numerical Analysis of Grid Generated Turbulence With and Without Mean Strain
,”
Exp. Therm. Fluid. Sci.
,
98
, pp.
594
603
.
25.
Panda
,
J.
,
2019
, “
A Review of Pressure Strain Correlation Modeling for Reynolds Stress Models
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
234
(
8
), p.
0954406219893397
.
26.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2014
, “
On the Realizability of Pressure–strain Closures
,”
J. Fluid. Mech.
,
755
, pp.
535
560
.
27.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2015
, “
Hydrodynamic Stability of Three-Dimensional Homogeneous Flow Topologies
,”
Phys. Rev. E
,
92
(
5
), p.
053001
.
28.
Mishra
,
A.
, and
Girimaji
,
S.
,
2016
, “
Manufactured Turbulence With Langevin Equations
.” ArXiv Preprint arXiv:1611.03834.
29.
Mishra
,
A. A.
, and
Girimaji
,
S. S.
,
2017
, “
Toward Approximating Non-Local Dynamics in Single-Point Pressure–Strain Correlation Closures
,”
J. Fluid. Mech.
,
811
, pp.
168
188
.
30.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
New York
.
31.
Rotta
,
J.
,
1951
, “
Statistische Theorie Nichthomogener Turbulenz
,”
Z. Phys.
,
129
(
6
), pp.
547
572
.
32.
Sarkar
,
S.
, and
Speziale
,
C. G.
,
1990
, “
A Simple Nonlinear Model for the Return to Isotropy in Turbulence
,”
Phys. Fluids. A.
,
2
(
1
), pp.
84
93
.
33.
Warrior
,
H.
,
Mathews
,
S.
,
Maity
,
S.
, and
Sasmal
,
K.
,
2014
, “
An Improved Model for the Return to Isotropy of Homogeneous Turbulence
,”
ASME J. Fluids Eng.
,
136
(
3
), p.
034501
.
34.
Nematollahi
,
A.
,
Dadvand
,
A.
, and
Dawoodian
,
M.
,
2015
, “
An Axisymmetric Underwater Vehicle-Free Surface Interaction: A Numerical Study
,”
Ocean. Eng.
,
96
, pp.
205
214
.
35.
Fluent ANSYS
,
2011
,
14.0 User Guide
.
36.
Versteeg
,
H. K.
, and
Malalasekera
,
W
,
2007
,
An Introduction to Computational Fluid Dynamics: the Finite Volume Method
,
Pearson Education
,
London, UK
.
37.
Posa
,
A.
, and
Balaras
,
E.
,
2020
, “
A Numerical Investigation About the Effects of Reynolds Number on the Flow Around An Appended Axisymmetric Body of Revolution
,”
J. Fluid. Mech.
,
884
, p.
916
.
38.
Monte
,
S.
,
Sagaut
,
P.
, and
Gomez
,
T.
,
2011
, “
Analysis of Turbulent Skin Friction Generated in Flow Along a Cylinder
,”
Phys. Fluids.
,
23
(
6
), p.
065106
.
39.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1994
, “
Active Turbulence Control for Drag Reduction in Wall-Bounded Flows
,”
J. Fluid. Mech.
,
262
, pp.
75
110
.
You do not currently have access to this content.