Abstract

The erosion wear due to raindrop plays a vital role in the service life of wind turbine components, especially blades. Furthermore, the rain impact angle and the environmental conditions have a major impact on erosion wear. In the present work, the rain erosion performance of glass fiber reinforced polyester (GFRP) blade material in offshore and onshore environmental conditions has been studied. A whirling arm test rig was created and used to conduct the erosion tests on both offshore and onshore conditions. To simulate the offshore and onshore environmental conditions, experiments were carried out using both fresh and saltwater. The trail runs were carried out for time duration (30–90 min) at different impact angles (0—90 deg) by running the whirling arm tester at different impact velocities (30–70 m/s). During the experimentation, the impact velocity varied from 30 to 70 m/s. The impact angle was taken as 0 deg, 30 deg, 45 deg, 60 deg, and 90 deg, respectively. The results showed that erosion wear in the offshore conditions was more in all the cases as compared to onshore conditions. Furthermore, the maximum mass loss was at 45-deg impact angles for both conditions, which was further endorsed by Scanning Electron Microscope (SEM) analysis. Very little work has been reported on the optimization of erosion wear response of Offshore and Onshore wind turbines by using different design of experiment techniques. The erosion testing reveals that the GFRP blades exhibit a ductile erosion mechanism, which was further explained by using three-dimensional surface plots with the help of Image J software.

References

1.
Keegan
,
M. H.
,
Nash
,
D.
, and
Stack
,
M.
,
2012
, “
Modelling Rain Drop Impact on Offshore Wind Turbine Blades
,”
ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
, Article-GT.
2.
Tian
,
Z.
, and
Wang
,
H.
,
2020
, “
Wind Power System Reliability and Maintenance Optimization Considering Turbine and Wind Uncertainty
,”
J. Quality Maintenance Eng.
,
28
(
1
), pp.
252
272
.
3.
Sareen
,
A.
,
Sapre
,
C. A.
, and
Selig
,
M. S.
,
2014
, “
Effects of Leading-Edge Erosion on Wind Turbine Blade Performance
,”
Wind Energy
,
17
(
10
), pp.
1531
1542
.
4.
Gaudern
,
N.
,
2014
, “
A Practical Study of the Aerodynamic Impact of Wind Turbine Blade Leading Edge Erosion
,”
J. Phys.: Conf. Ser.
,
524
(
1
), p.
012031
. IOP Publishing.
5.
Cappugi
,
L.
,
Castorrini
,
A.
,
Bonfiglioli
,
A.
,
Minisci
,
E.
, and
Campobasso
,
M. S.
,
2021
, “
Machine Learning-Enabled Prediction of Wind Turbine Energy Yield Losses due to General Blade Leading Edge Erosion
,”
Energy Convers. Manage.
,
245
, p.
114567
.
6.
Mishnaevsky Jr
,
L.
,
Fæster
,
S.
,
Mikkelsen
,
L. P.
,
Kusano
,
Y.
, and
Bech
,
J. I.
,
2020
, “
Micromechanisms of Leading Edge Erosion of Wind Turbine Blades: Xray Tomography Analysis and Computational Studies
,”
Wind Energy
,
23
(
3
), pp.
547
562
.
7.
Pugh
,
K.
,
Rasool
,
G.
, and
Stack
,
M. M.
,
2018
, “
Some Thoughts on Mapping Tribological Issues of Wind Turbine Blades due to Effects of Onshore and Offshore Raindrop Erosion
,”
J. Bio- Tribo-Corros.
,
4
(
3
), p.
50
.
8.
Eisenberg
,
D.
,
Laustsen
,
S.
, and
Stege
,
J.
,
2018
, “
Wind Turbine Blade Coating Leading Edge Rain Erosion Model: Development and Validation
,”
Wind Energy
,
21
(
10
), pp.
942
951
.
9.
Pugh
,
K.
,
Rasool
,
G.
, and
Stack
,
M. M.
,
2019
, “
Raindrop Erosion of Composite Materials: Some Views on the Effect of Bending Stress on Erosion Mechanisms
,”
J. Bio- Tribo-Corros.
,
5
(
2
), p.
45
.
10.
Nikitas
,
G.
,
Bhattacharya
,
S.
, and
Vimalan
,
N.
,
2020
, “
16.1 Renewables in the Context of Limiting air Pollution and Climate Change. Future Energy: Improved
,”
Sust. Clean Options Our Planet
,
16
(
1
), pp.
1
331
.
11.
Hasager
,
C.
,
Vejen
,
F.
,
Bech
,
J. I.
,
Skrzypiński
,
W. R.
,
Tilg
,
A. M.
, and
Nielsen
,
M.
,
2020
, “
Assessment of the Rain and Wind Climate With Focus on Wind Turbine Blade Leading Edge Erosion Rate and Expected Lifetime in Danish Seas
,”
Renew. Energy
,
149
(
1
), pp.
91
102
.
12.
Bartolomé
,
L.
, and
Teuwen
,
J.
,
2019
, “
Prospective Challenges in the Experimentation of the Rain Erosion on the Leading Edge of Wind Turbine Blades
,”
Wind Energy
,
22
(
1
), pp.
140
151
.
13.
Ciang
,
C. C.
,
Lee
,
J. R.
, and
Bang
,
H. J.
,
2008
, “
Structural Health Monitoring for a Wind Turbine System: A Review of Damage Detection Methods
,”
Meas. Sci. Technol.
,
19
(
12
), p.
122001
.
14.
Han
,
W.
,
Kim
,
J.
, and
Kim
,
B.
,
2018
, “
Effects of Contamination and Erosion at the Leading Edge of Blade Tip Airfoils on the Annual Energy Production of Wind Turbines
,”
Renew. Energy
,
115
, pp.
817
823
.
15.
Visal
,
S.
, and
Deokar
,
S. U.
,
2016
, “
A Review Paper on Properties of Carbon Fiber Reinforced Polymers
,”
Int. J. Innovative Res. Sci. Technol.
,
2
(
12
), pp.
238
243
.
16.
Wiater
,
A.
, and
Siwowski
,
T.
,
2020
, “
Comparison of Tensile Properties of Glass Fibre Reinforced Polymer Rebars by Testing According to Various Standards
,”
Materials
,
13
(
18
), p.
4110
.
17.
Ou
,
Y.
,
Zhu
,
D.
,
Zhang
,
H.
,
Huang
,
L.
,
Yao
,
Y.
,
Li
,
G.
, and
Mobasher
,
B.
,
2016
, “
Mechanical Characterization of the Tensile Properties of Glass Fiber and Its Reinforced Polymer (GFRP) Composite Under Varying Strain Rates and Temperatures
,”
Polymers
,
8
(
5
), p.
196
.
18.
Verma
,
A.
,
Jiang
,
Z.
,
Ren
,
Z.
,
Hu
,
W.
, and
Teuwen
,
J.
,
2021
, “
Effects of Onshore and Offshore Environmental Parameters on the Leading-Edge Erosion of Wind Turbine Blades: A Comparative Study
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
4
), p.
042001
.
19.
Shankar Verma
,
A.
,
Jiang
,
Z.
,
Ren
,
Z.
,
Hu
,
W.
, and
Teuwen
,
J. J.
,
2021
, “
Effects of Onshore and Offshore Environmental Parameters on the Leading-Edge Erosion of Wind Turbine Blades: A Comparative Study
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
4
), p.
042001
.
20.
Ahamed
,
R. A. R.
,
Johnstone
,
C. M.
, and
Stack
,
M. M.
,
2016
, “
Impact Angle Effects on Erosion Maps of GFRP: Applications to Tidal Turbines
,”
J. Bio- Tribo- Corros.
,
2
(
2
), p.
14
.
21.
Davis
,
R.
, and
John
,
P.
,
2018
, “
Application of Taguchi-Based Design of Experiments for Industrial Chemical Processes
,”
Stat. Approaches Emphasis Des. Exp. Appl. Chem. Process.
,
137
(
1
), p.
137155
.
22.
Singh
,
G.
,
Kumar
,
S.
, and
Sehgal
,
S. S.
,
2018
,
Taguchi Approach to Erosion Wear Optimization of WC-10Co-4Cr Sprayed Austenitic [Q11]Steel Subjected to Equisized Slurry. Industrial Lubrication and Tribology
,
Emerald Publishing Limited
, Bingley, UK.
23.
Singh
,
G.
,
Kumar
,
S.
,
Sehgal
,
S. S.
, and
Prasad
,
S. B.
,
2019
,
Erosion Wear Analysis of HVOF Coated Colmonoy-88 and Stellite-6-Micron Layers on Pump Impeller Steel by Using the Taguchi's Approach. Industrial Lubrication and Tribology
,
Emerald Publishing Limited
, Bingley, UK.
24.
Stojanovic
,
B.
,
lagojevic
,
J.
,
Babic
,
M.
,
Velickovic
,
S.
, and
Miladinovic
,
S.
,
2017
, “
Optimization of Hybrid Aluminum Composites Wear Using Taguchi Method and Artificial Neural Network
,”
Ind. Lubr. Tribol.
,
69
(
6
), pp.
1005
1015
.
25.
Monikandan
,
V. V.
,
Jacob
,
J. C.
,
Joseph
,
M. A.
, and
Rajendrakumar
,
P. K.
,
2015
, “
Statistical Analysis of Tribological Properties of Aluminum Matrix Composites Using Full Factorial Design
,”
Trans. Indian Inst. Met.
,
68
(
1
), pp.
53
57
.
26.
Mishra
,
S. C.
,
Das
,
S.
,
Satapathy
,
A.
,
Ananthapadmanabhan
,
P. V.
, and
Sreekumar
,
K. P.
,
2009
, “
Erosion Wear Analysis of Plasma Sprayed Ceramic Coating Using the Taguchi Technique
,”
Tribol. Trans.
,
52
(
3
), pp.
401
404
.
27.
Patnaik
,
A.
,
Satapathy
,
A.
,
Mahapatra
,
S. S.
, and
Dash
,
R. R.
,
2008
, “
A Taguchi Approach for Investigation of Erosion of Glass Fiber—Polyester Composites
,”
J. Reinf. Plast. Compos.
,
27
(
8
), pp.
871
888
.
28.
Herring
,
R.
,
Dyer
,
K.
,
Martin
,
F.
, and
Ward
,
C.
,
2019
, “
The Increasing Importance of Leading Edge Erosion and a Review of Existing Protection Solutions
,”
Renew. Sust. Energy Rev.
,
115
(
1
), p.
109382
.
29.
Siddons
,
C.
,
Macleod
,
C.
,
Yang
,
L.
, and
Stack
,
M.
,
2015
,
An Experimental Approach to Analysing Rain Droplet Impingement on Wind Turbine Blade Materials. EWEA 2015 Annual Event
,
strathprints
.
30.
Wensink
,
H.
, and
Elwenspoek
,
M. C.
,
2002
, “
A Closer Look at the Ductile–Brittle Transition in Solid Particle Erosion
,”
Wear
,
253
(
9–10
), pp.
1035
1043
.
31.
Sparks
,
A. J.
, and
Hutchings
,
I. M.
,
1991
, “
Transitions in the Erosive Wear Behaviour of a Glass Ceramic
,”
Wear
,
149
(
1–2
), pp.
99
110
.
32.
Dasgupta
,
R.
,
Prasad
,
B. K.
,
Jha
,
A. K.
,
Modi
,
O. P.
,
Das
,
S.
, and
Yegneswaran
,
A. H.
,
1998
, “
Effects of Sand Concentration on Slurry Erosion of Steels
,”
Mater. Trans. JIM
,
39
(
12
), pp.
1185
1190
.
33.
Ilieva
,
G.
,
2017
, “
Mechanisms of Water Droplets Deposition on Turbine Blade Surfaces and Erosion Wear Effects
,”
J. Appl. Fluid Mech.
,
10
(
2
), pp.
551
567
.
34.
Singh
,
G.
,
Kumar
,
S.
, and
Sehgal
,
S. S.
,
2020
, “
Erosion Tribo Performance of HVOF Deposited WC-10Co-4Cr and WC-10Co-4Cr+ 2% Y2O3 Micron Layers on Pump Impeller Steel
,”
Part. Sci. Technol.
,
38
(
1
), pp.
34
44
.
35.
Singh
,
G.
,
Kumar
,
S.
, and
Sehgal
,
S. S.
,
2019
, “
Tribo-Erosion Performance of few HVOF Coated Micron Layers Subjected to Equi-Sized Slurry Particles
,”
Mater. Res. Express
,
6
(
9
), p.
09644
.
You do not currently have access to this content.