Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The generation of two-dimensional time-dependent magnetohydrodynamic surface waves in a flowing stream is investigated in this paper. The waves here arise from some initial disturbances at the free surface of an electrically conducting field-free fluid, which is of finite depth. It is also assumed that a constant magnetic field exists outside the air–water interface. With the help of linearized theory, the present problem is modeled as an initial boundary value problem, and the Laplace–Fourier transform techniques are primarily used to obtain the form of free surface elevation through infinite integrals. These integrals are then interpreted asymptotically for large time t and distance x from the origin, using the method of stationary phase. Dispersion relation, phase, and group velocities are also studied. Numerical results of the asymptotic form of free surface elevation are obtained in a number of figures for different values of current speed, Alfven velocity, and various types of initial disturbances. Graphical representations demonstrate that the presence of a magnetic field has a significant effect on wave motion.

References

1.
Lamb
,
H.
,
1945
,
Hydrodynamics
,
Dover Publications
,
New York
.
2.
Stoker
,
J. J.
,
1957
,
Water Waves: The Mathematical Theory With Applications
, Vol.
36
,
John Wiley & Sons
,
New York
.
3.
Kranzer
,
H. C.
, and
Keller
,
J. B.
,
1959
, “
Water Waves Produced by Explosions
,”
J. Appl. Phys.
,
30
(
3
), pp.
398
407
.
4.
Chaudhuri
,
K.
,
1968
, “
Waves in Shallow Water Due to Arbitrary Surface Disturbances
,”
Appl. Sci. Res.
,
19
(
1
), pp.
274
284
.
5.
Wen
,
S.-L.
,
1982
, “
A Note on Water Waves Created by Surface Disturbances
,”
Int. J. Math. Educ. Sci. Technol.
,
13
(
1
), pp.
55
58
.
6.
Mandal
,
B. N.
,
1988
, “
Water Waves Generated by Disturbance at an Inertial Surface
,”
Appl. Sci. Res.
,
45
(
1
), pp.
67
73
.
7.
Mandal
,
B. N.
, and
Mukherjee
,
S.
,
1989
, “
Water Waves Generated at an Inertial Surface by an Axisymmetric Initial Surface Disturbance
,”
Int. J. Math. Educ. Sci. Technol.
,
20
(
5
), pp.
743
747
.
8.
Ghosh
,
P.
,
Basu
,
U.
, and
Mandal
,
B. N.
,
2000
, “
Waves Due to Initial Disturbances at the Inertial Surface in a Stratified Fluid of Finite Depth
,”
Int. J. Math. Math. Sci.
,
24
(
4
), pp.
265
276
.
9.
Maiti
,
P.
, and
Mandal
,
B.
,
2005
, “
Water Waves Generated Due to Initial Axisymmetric Disturbances in Water With an Ice-Cover
,”
Arch. Appl. Mech.
,
74
(
9
), pp.
629
636
.
10.
Baek
,
H.
,
Kim
,
Y.
,
Lee
,
I.
, and
Kwon
,
S.
,
2017
, “
Revisit of Cauchy-Poisson Problem in Unsteady Water Wave Problem
,”
Proceedings of the 32nd International Workshop on Water Waves and Floating Bodies
,
Dalian, China
,
Apr. 23–26
, pp.
13
16
.
11.
Kundu
,
P.
,
Banerjea
,
S.
, and
Mandal
,
B.
,
2018
, “
Cauchy Poisson Problem for Water With a Porous Bottom
,” Mathematics and Computing: 4th International Conference, ICMC 2018, Revised Selected Papers 4, Varanasi, India, Jan. 9–11,
Springer
, pp.
174
185
.
12.
Miles
,
J. W.
,
1962
, “
Transient Gravity Wave Response to an Oscillating Pressure
,”
J. Fluid. Mech.
,
13
(
1
), pp.
145
150
.
13.
Debnath
,
L.
,
1968
, “
On Transient Development of Surface Waves
,”
Zeitschrift für angewandte Mathematik und Physik ZAMP
,
19
(
6
), pp.
948
961
.
14.
Debnath
,
L.
, and
Rosenblat
,
S.
,
1969
, “
The Ultimate Approach to the Steady State in the Generation of Waves on a Running Stream
,”
Q. J. Mech. Appl. Math.
,
22
(
2
), pp.
221
233
.
15.
Schulkes
,
R. M. S. M.
, and
Sneyd
,
A. D.
,
1988
, “
Time-Dependent Response of Floating Ice to a Steadily Moving Load
,”
J. Fluid. Mech.
,
186
(
1
), pp.
25
46
.
16.
Pramanik
,
A.
, and
Majumdar
,
M.
,
1992
, “
The Gravity Waves Created by a Moving Source in a Fluid of Finite Depth
,”
Q. Appl. Math.
,
50
(
3
), pp.
437
449
.
17.
Karmakar
,
D.
, and
Guedes Soares
,
C.
,
2018
, “
Wave Motion Control Over Submerged Horizontal Plates
,”
ASME J. Offshore. Mech. Arct. Eng.
,
140
(
3
), p.
031101
.
18.
Mohanty
,
S. K.
,
2019
, “
Transient Flexural Gravity Waves in Two-Layer Fluid
,”
Meccanica
,
54
(
3
), pp.
491
504
.
19.
Kundu
,
P. K.
, and
Mandal
,
B.
,
2019
, “
Generation of Surface Waves Due to Initial Axisymmetric Surface Disturbance in Water With a Porous Bottom
,”
Int. J. Appl. Mech. Eng.
,
24
(
3
), pp.
625
644
.
20.
Mohanty
,
S. K.
, and
Sidharth
,
M.
,
2020
, “
Time Dependent Wave Motion in a Permeable Bed
,”
Meccanica
,
55
(
7
), pp.
1481
1497
.
21.
Mohanty
,
S. K.
,
2021
, “
Time-dependent Wave Motion with Undulated Bottom
,”
Acta Mech.
,
232
(
1
), pp.
283
303
.
22.
Alfvén
,
H.
,
1942
, “
Existence of Electromagnetic-Hydrodynamic Waves
,”
Nature
,
150
(
3805
), pp.
405
406
.
23.
Cowling
,
T.
,
1962
, “
Magnetohydrodynamics
,”
Rep. Progress Phys.
,
25
(
1
), p.
244
.
24.
Lighthill
,
M. J.
,
1960
, “
Studies on Magneto-Hydrodynamic Waves and Other Anisotropic Wave Motions
,”
Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci.
,
252
(
1014
), pp.
397
430
.
25.
Debnath
,
L.
,
1977
, “
Generation of Dispersive Surface Waves in Magnetohydrodynamics
,”
Plasma Phys.
,
19
(
3
), p.
263
.
26.
Pramanik
,
A.
, and
Majumdar
,
M.
,
1995
, “
Generation of Waves by a Moving Oscillatory Source in Magnetohydrodynamics
,”
Int. J. Energy Res.
,
19
(
1
), pp.
45
52
.
27.
Pramanik
,
A. K.
, and
Banik
,
D.
,
2001
, “
Generation of Magneto-Hydrodynamic Waves by Moving Pressure Distribution
,”
JSME Int. J. Ser. B Fluids Thermal Eng.
,
44
(
4
), pp.
568
574
.
28.
Hossain
,
S.
,
Paul
,
S.
, and
De
,
S.
,
2022
, “
Effects of Bottom Permeability on Wave Generation by a Moving Oscillatory Disturbance in Magneto-Hydrodynamics
,”
Waves Random Complex Media
, pp.
1
27
.
29.
Rakov
,
V. A.
, and
Uman
,
M. A.
,
2003
,
Lightning: Physics and Effects
,
Cambridge University Press
,
Cambridge
.
30.
Lighthill
,
M. J.
,
1958
,
An Introduction to Fourier Analysis and Generalised Functions
,
Cambridge University Press
,
Cambridge
.
31.
Bleistein
,
N.
,
1966
, “
Uniform Asymptotic Expansions of Integrals With Stationary Point Near Algebraic Singularity
,”
Commun. Pure Appl. Math.
,
19
(
4
), pp.
353
370
.
You do not currently have access to this content.