Thermoacoustic combustion oscillation and vibration experienced in a gas turbine at operation is reported. The oscillation manifested itself at two distinct frequencies representing the first and second mode frequencies of the combined hot and cold (combustion chamber/burner air) Rijke type thermoacoustic model. The first mode was a lower amplitude thermoacoustically driven free Rijke mode. The higher frequency second Rijke mode coupled with the second acoustic mode of the combustion chamber resulted in high amplitude oscillation. Modifications to the burner cold air components are considered which would eliminate the oscillation. The paper will present and discuss the principal parameters which caused the oscillation and changes which would eliminate it.

1.
Sondhauss, C., 1850, “Uber die Schallschwingungen der Luft in erhitzten Glasrohren und in gedekten Pfeifen von ungleicher Weite,” Poggendorff Annalen der Physik und Chemie, 79, pp. 1–34.
2.
Rijke, P. L., 1859, “Notiz uber eine neue Art, die an einer an beiden Enden offnen Rohre enthaltene Luft in Schwingungen zu versetzen,” Poggendorff Annalen der Physik und Chemie, 107, pp. 339–345.
3.
Eisinger
,
F. L.
,
1994
, “
Fluid-Thermoacoustic Vibration of a Gas Turbine Recuperator Tubular Heat Exchanger System
,”
ASME J. Eng. Gas Turbines Power
,
116
, pp.
709
717
.
4.
Eisinger, F. L., 1996, “Vibration of Systems Comprised of Hot and Cold Components,” United States Patent No. 5,489,202.
5.
Eisinger
,
F. L.
,
1999
, “
Eliminating Thermoacoustic Oscillations in Heat Exchanger and Steam Generator Systems
,”
ASME J. Pressure Vessel Technol.
,
121
, pp.
444
452
.
6.
Chu, B. T., 1955, “Pressure Waves Generated by Addition of Heat in a Gaseous Medium,” Technical Note 3411, National Advisory Committee for Aeronautics, pp. 1–47.
7.
Chu, B. T., 1956, “Stability of Systems Containing a Heat Source-the Rayleigh Criterion,” Research Memorandum 56D27, National Advisory Committee for Aeronautics.
8.
Eisinger, F. L., and Sullivan, R. E., 2000, “Case Studies of Burner/Furnace Systems Sensitive to Thermoacoustic Oscillations,” in Flow Induced Vibration, Proceedings of the 7th International Conference on Flow-Induced Vibration, Lucerne, Switzerland, S. Ziada and T. Staubli, eds., Balkema publishers Rotterdam.
9.
Eisinger
,
F. L.
, and
Sullivan
,
R. E.
,
2002
, “
Avoiding Thermoacoustic Vibration in Burner/Furnace Systems
,”
ASME J. Pressure Vessel Technol.
,
124
, pp.
418
424
.
10.
Rayleigh, Lord, 1945, Theory of Sound, Vol. II, Dover Publications, New York, pp. 223–234.
11.
Carvalho
, Jr.,
J. A.
,
Ferreira
,
M. A.
,
Bressan
,
C.
, and
Ferreira
,
J. L. G.
,
1989
, “
Rijke Tube Burner
,”
Combust. Flame
,
76
, p.
17
17
.
12.
Feldman, K. T., 1966, “A Study of Heat Generated Pressure Oscillations in a Closed End Pipe,” Ph.D. dissertation, Mechanical Engineering, University of Missouri, Columbia, MO.
13.
Feldman
,
K. T.
,
1968
, “
Review of the Literature on Sondhauss Thermoacoustic Phenomena
,”
J. Sound Vib.
,
7
(
1
), pp.
71
82
.
14.
Feldman
,
K. T.
,
1968
, “
Review of Literature on Rijke Thermoacoustic Phenomena
,”
J. Sound Vib.
,
7
(
1
), pp.
83
89
.
15.
Feldman
,
K. T.
, and
Carter
,
R. L.
,
1970
, “
A Study of Heat Driven Pressure Oscillations in a Gas
,”
ASME J. Heat Transfer
,
92
, pp.
536
541
.
16.
Rott, N., 1980, “Thermoacoustics,” Advances in Applied Mechanics, 20, Academic Press, New York, NY.
17.
Rott
,
N.
, and
Zouzoulas
,
G.
,
1976
, “
Thermally Driven Acoustic Oscillations, Part IV: Tubes With Variable Cross Section
,”
ZAMP
,
27
, pp.
197
224
.
18.
ANSYS Computer Program, 1994, Release 5.5.1, ANSYS, Inc., Houston, PA.
You do not currently have access to this content.