In this paper, we first review the impact of the powerful finite element method (FEM) in structural engineering, and then address the shortcomings of FEM as a tool for risk-based decision making and incomplete-data-based failure analysis. To illustrate the main shortcoming of FEM, i.e., the computational results are point estimates based on “deterministic” models with equations containing mean values of material properties and prescribed loadings, we present the FEM solutions of two classical problems as reference benchmarks: (RB-101) The bending of a thin elastic cantilever beam due to a point load at its free end and (RB-301) the bending of a uniformly loaded square, thin, and elastic plate resting on a grillage consisting of 44 columns of ultimate strengths estimated from 5 tests. Using known solutions of those two classical problems in the literature, we first estimate the absolute errors of the results of four commercially available FEM codes (ABAQUS, ANSYS, LSDYNA, and MPAVE) by comparing the known with the FEM results of two specific parameters, namely, (a) the maximum displacement and (b) the peak stress in a coarse-meshed geometry. We then vary the mesh size and element type for each code to obtain grid convergence and to answer two questions on FEM and failure analysis in general: (Q-1) Given the results of two or more FEM solutions, how do we express uncertainty for each solution and the combined? (Q-2) Given a complex structure with a small number of tests on material properties, how do we simulate a failure scenario and predict time to collapse with confidence bounds? To answer the first question, we propose an easy-to-implement metrology-based approach, where each FEM simulation in a grid-convergence sequence is considered a “numerical experiment,” and a quantitative uncertainty is calculated for each sequence of grid convergence. To answer the second question, we propose a progressively weakening model based on a small number (e.g., 5) of tests on ultimate strength such that the failure of the weakest column of the grillage causes a load redistribution and collapse occurs only when the load redistribution leads to instability. This model satisfies the requirement of a metrology-based approach, where the time to failure is given a quantitative expression of uncertainty. We conclude that in today’s computing environment and with a precomputational “design of numerical experiments,” it is feasible to “quantify” uncertainty in FEM modeling and progressive failure analysis.

1.
Ross
,
B.
, 1984, “
What is a Design Defect
?”
Proceedings of the 1st International Conference on Structural Failure, Product Liability and Technical Insurance
, Vienna, Austria, 26–29 September 1983, edited by
H. P.
Rossmanith
,
Elsevier Science Publishers B.V.
,
North-Holland
, pp.
23
71
.
2.
Greenman vs. Yuba Power Products, Inc., 1963, 59 Cal 2nd 57.
3.
Rossmanith
,
H. P.
, 1984, “
FPE - Failure Prevention Engineering: Fracture Mechanics Betwixt Designer and Failure Analyst
,” in
Proceedings of the 1st International Conference on Structural Failure, Product Liability and Technical Insurance
, Vienna, Austria, 26–29 September 1983, edited by
H. P.
Rossmanith
,
Elsevier Science Publishers B.V.
,
North-Holland
, pp.
11
21
.
5.
Ciampoli
,
M.
, 1999, “
A Probabilistic Methodology to Assess the Reliability of Deteriorating Structural Elements
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
168
, pp.
207
220
.
6.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Reliability Assessment Using Stochastic Finite Element Analysis
,
Wiley
.
7.
Joshi
,
Y.
,
Baelmans
,
M.
,
Copeland
,
D.
,
Lasance
,
C. J. M.
,
Parry
,
J.
, and
Rantala
,
J.
, 2001, “
Challenges in Thermal Modeling of Electronics at the System Level: Summary of Panel Held at the Therminic 2000
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
, pp.
611
613
.
8.
Iwasaki
,
A.
,
Sugiya
,
T.
, and
Todoroki
,
A.
, 2002, “
Unmanned Structural Health Monitoring via Internet with Unsupervised Statistical Diagnosis (Application for Damage Detection of Jet Fan),”
Proceedings of the 1st European Workshop on Structural Health Monitoring (SHM 2002)
, Paris—ENS-Cachan—10–12 July 2002, Paper 2002-076, http://www.onera.fr/shm2002/shm2k2-41-80.pdfhttp://www.onera.fr/shm2002/shm2k2-41-80.pdf.
9.
Gauss
,
C. F.
, 1871, see Carl Friedrich Gauss Werks, VII, Gottingen.
10.
Galerkin
,
B. G.
, 1915, “
Series Solution of Some Problems of Elastic Equilibrium of Rods and Plates
,”
Vestn. Inzh. Tekh..
0372-5936,
19
, pp.
897
908
(in Russian).
11.
Biezeno
,
C. B.
, and
Koch
,
J. J.
, 1923, “
Over een Nieuwe Methode ter Berekening van Vlokke Platen
,”
De Ingenieur (in Dutch)
,
38
, pp.
25
36
.
12.
Strutt
,
J. W.
(Lord Rayleigh), 1870, “
On the Theory of Resonance
,”
Philos. Trans. R. Soc. London
0370-2316,
161
, pp.
77
118
.
13.
Ritz
,
W.
, 1909, “
Uber Eine Neue Methode zur Losung Gewissen Variations—Probleme der Mathematischen Physik
,”
J. Reine Angew. Math.
0075-4102,
135
, pp.
1
61
.
14.
Courant
,
R.
, 1943, “
Variational Methods for the Solution of Problems of Equilibrium and Vibration
,”
Bull. Am. Math. Soc.
0002-9904,
49
, pp.
1
23
.
15.
Prager
,
W.
, and
Synge
,
J. L.
, 1947, “
Approximation in Elasticity Based on the Concept of Function Space
,”
Q. Appl. Math.
0033-569X,
5
, pp.
241
269
.
16.
Zienkiewicz
,
O. C.
, and
Cheung
,
Y. K.
, 1964, “
The Finite Element Method for Analysis of Elastic Isotropic and Orthotropic Slabs
,”
Proc.-Inst. Civ. Eng.
0020-3262,
28
, pp.
471
488
.
17.
Hrenikoff
,
A.
, 1941, “
Solutions of Problems in Elasticity by the Framework Method
,”
J. Appl. Mech.
0021-8936,
A8
, pp.
169
175
.
18.
McHenry
,
D.
, 1943, “
A Lattice Analogy for the Solution of Plane Stress Problem
,”
J. Inst. Civ. Eng.
,
21
, pp.
59
82
.
19.
Newmark
,
N. M.
, 1949, “
Numerical Methods of Analysis in Bars, Plates and Elastic Bodies
,”
Numerical Methods in Analysis in Engineering
, edited by
L. E.
Grinter
,
Macmillan
.
20.
Argyris
,
J. H.
, 1960,
Energy Theorems and Structural Analysis
,
Butterworth
(reprinted from vol.
26
, pp.
347
356
(1954) and vol.
27
, pp. 42–58 (1955)).
21.
Turner
,
M. J.
,
Clough
,
R. W.
,
Martin
,
H. C.
, and
Topp
,
L. J.
, 1956, “
Stiffness and Deflection Analysis of Complex Structures
,”
J. Aero. Sci.
,
23
, pp.
805
823
.
22.
Bazeley
,
G. P.
,
Cheung
,
Y. K.
,
Irons
,
B. M.
, and
Zienkiewicz
,
O. C.
, 1966, “
Triangle Elements in Plate Bending: Conforming and Nonconforming Solutions
,”
Proc. Conf. Matrix Meth. Struc. Mech.
,
Wright-Patterson AFB
,
Ohio
.
23.
Stummel
,
F.
, 1980, “
The Limitations of the Patch Test
,”
Int. J. Numer. Methods Eng.
0029-5981,
15
, pp.
177
188
.
24.
Irons
,
B.
, and
Loikkanen
,
M.
, 1983, “
An Engineers’ Defence of the Patch Test
,”
Int. J. Numer. Methods Eng.
0029-5981,
19
, pp.
1391
1401
.
25.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2000,
The Finite Element Method
, 5th ed., Vol.
1
,
The Basis
, Butterworth-Heinemann.
26.
Hughes
,
T. J. R.
, 1987,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
, and Dover reprint (2000).
27.
Wiener
,
N.
, 1938, “
The Homogeneous Chaos
,”
Am. J. Math.
0002-9327,
60
, pp.
897
936
.
28.
Becus
,
G. A.
, and
Cozzarelli
,
F. A.
, 1976, “
The Random Steady State Diffusion Problem. I: Random Generalized Solutions to Laplace’s Equation
,”
SIAM J. Appl. Math.
0036-1399,
31
, pp.
134
147
.
29.
Becus
,
G. A.
, and
Cozzarelli
,
F. A.
, 1976, “
The Random Steady State Diffusion Problem. II: Random Solutions to Nonlinear, Homogeneous, Steady State Diffusion Problems
,”
SIAM J. Appl. Math.
0036-1399,
31
, pp.
148
158
.
30.
Becus
,
G. A.
, and
Cozzarelli
,
F. A.
, 1976, “
The Random Steady State Diffusion Problem. III: Solutions to Random Diffusion Problems by the Method of Random Successive Approximations
,”
SIAM J. Appl. Math.
0036-1399,
31
, pp.
159
178
.
31.
Sobczyk
,
K.
, 1985,
Stochastic Wave Propagation
, Elsevier (
PWN-Polish Scientific Publishers
, Warszawa).
32.
Potapov
,
V. D.
, 1999,
Stability of Stochastic Elastic and Viscoelastic Systems
,
Wiley
.
33.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
4927
4948
.
34.
Xiu
,
D.
,
Lucor
,
D.
,
Su
,
C. H.
, and
Karniadakis
,
G. E.
, 2002, “
Stochastic Modeling of Flow-Structure Interactions using Generalized Polynomial Chaos
,”
J. Fluids Eng.
0098-2202,
124
, pp.
51
59
.
35.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2003, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos
,”
J. Comput. Phys.
0021-9991,
187
, pp.
137
167
.
36.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2003, “
A New Stochastic Approach to Transient Heat Conduction Modeling with Uncertainty
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4681
4693
.
37.
Platen
,
E.
, 1999, “
An Introduction to Numerical Methods for Stochastic Differential Equations
,”
Acta Numerica
0962-4929,
8
, pp.
197
246
.
38.
Weibull
,
W.
, 1939, “
A Statistical Theory of the Strength of Materials
,” published in English as Handbook No. 151 by the Royal Swedish Inst for Engrg. Research,
Stockholm
, Sweden.
39.
Freudenthal
,
A. M.
, 1946, “
The Statistical Aspect of Fatigue of Materials
,”
Proc. R. Soc. London, Ser. A
1364-5021,
A-187
, pp.
416
429
.
40.
Freudenthal
,
A. M.
, 1950, “
Statistical Concepts
,” in
The Inelastic Behavior of Engineering Materials & Structures
,
Wiley
, pp.
46
52
.
41.
Cornell
,
C. A.
, 1969, “
A Probability-Based Structure Code
,”
J. Am. Concr. Inst.
0002-8061,
66
, pp.
974
985
.
42.
Ang
,
A. H. S.
, 1973, “
Structural Risk Analysis and Reliability-Based Design
,”
J. Struct. Div. ASCE
0044-8001,
99
, pp.
1891
1910
.
43.
Ang
,
A. H. S.
, and
Tang
,
W. H.
, 1975,
Probability Concepts in Engineering Planning and Design, Vol. 1: Basic Principles
,
Wiley
.
44.
Fong
,
J. T.
,
Rehm
,
R. G.
, and
Graminski
,
E. L.
, 1977, “
Weibull Statistics and a Microscopic Degradation Model of Paper
,”
Tappi J.
0734-1415,
60
, pp.
156
159
.
45.
Fong
,
J. T.
, 1978, “
Uncertainties in Fatigue Life Prediction and a Rational Definition of Safety Factors
,”
Nucl. Eng. Des.
0029-5493,
51
, pp.
45
54
.
46.
Fong
,
J. T.
, 1979, “
Statistical Aspects of Fatigue at Microscopic, Specimen, and Component Levels
,”
Proc. ASTM-NBS-NSF International Symp. on Fatigue Mechanisms
, Kansas City, MO, 22–24 May 1978, edited by
J. T.
Fong
, ASTM STP 675, pp.
729
758
.
47.
Ang
,
A. H. S.
, and
Shinozuka
,
M.
, 1979, in
Probabilistic Mechanics and Structural Reliability
, Proc. ASCE Specialty Conf. in memory of Prof. A. M. Freudenthal (1906–1977), Tucson, Arizona, 10–12 January 1979,
published by ASCE
,
New York, NY
.
48.
Sundararajan
,
C.
, 1995, in
Probabilistic Structural Mechanics Handbook: Theory and Industrial Applications
,
Chapman & Hall
.
49.
Hess
,
P. E.
, III
,
Bruchman
,
D.
, and
Ayyub
,
B. M.
, 1998, “
Uncertainties in Material and Geometric Strength Variables in Marine Structures
,” Chap. 14 in
Uncertainty Modeling and Analysis in Civil Engineering
, edited by
B. M.
Ayyub
,
CRC Press LLC
, Boca Raton, Florida, pp.
245
288
.
50.
Thacker
,
B. H.
,
Nicolella
,
D. P.
,
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
, 2001, “
Probabilistic Finite Element Analysis of the Human Lower Cervical Spine
,”
Math. Models Meth. Appl. Sci.
0218-2025,
13
, pp.
12
21
.
51.
Rahman
,
S.
, 2001, “
Probabilistic Fracture Mechanics: J-Estimation and Finite Element Methods
,”
Eng. Fract. Mech.
0013-7944,
68
, pp.
107
125
.
52.
Cambou
,
B.
, 1975, “
Application of First-Order Uncertainty Analysis in the Finite Element Method in Linear Elasticity
,”
Proc. 2nd Int. Conf. on Applications of Statistics and Probability in Soil and Structural Engrg.
,
Aachen
,
Germany
, Deutsche Gesellschaft fur Grd-und Grundbau ev, Essen, FRC, pp.
67
87
.
53.
Handa
,
K.
, and
Anderson
,
K.
, 1981, “
Application of Finite Element Methods in the Statistical Analysis of Structures
,”
Proc. 3rd Int. Conf. on Structural Safety and Reliability
, Amsterdam, The Netherlands,
Elsevier
,
Amsterdam
, pp.
409
417
.
54.
Hisada
,
T.
, and
Nakagiri
,
S.
, 1981, “
Stochastic Finite Element Method Developed for Structural Safety and Reliability
,”
Proc. 3rd International Conference on Structural Safety and Reliability
, Amsterdam,
Elsevier
,
Amsterdam
, pp.
395
408
.
55.
Vanmarcke
,
E.
, and
Grigoriu
,
M.
, 1983, “
Stochastic Finite Element Analysis of Simple Beams
,”
J. Eng. Mech.
0733-9399,
109
, pp.
1203
1214
.
56.
Der Kiureghian
,
A.
, and
Ke
,
B. -J.
, 1985, “
Finite-Element Based Reliability Analysis of Frame Structures
,”
Proc. 4th Int. Conference on Structural Safety and Reliability
, Kobe, Japan, Vol.
I
,
published by Int. Soc. for Structural Safety and Reliability
,
New York, NY
, pp.
395
404
.
57.
Liu
,
W. K.
,
Belytschko
,
T.
, and
Mani
,
A.
, 1986, “
Probabilistic Finite Elements for Nonlinear Structural Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
56
, pp.
61
81
.
58.
Liu
,
W. K.
,
Belytschko
,
T.
, and
Mani
,
A.
, 1986, “
Random Field Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
23
, pp.
1831
1845
.
59.
Benaroya
,
H.
, and
Rehak
,
M.
, 1988, “
Finite Element Methods in Probabilistic Structural Analysis: A Selected Review
,”
Appl. Mech. Rev.
0003-6900,
41
, pp.
201
213
.
60.
Shinozuka
,
M.
, and
Deodatis
,
G.
, 1988, “
Response Variability of Stochastic Finite Element Systems
,”
J. Eng. Mech.
0733-9399,
114
, pp.
499
519
.
61.
Shinozuka
,
M.
, and
Yamazaki
,
F.
, 1988, “
Stochastic Finite Element Analysis: An Introduction
,”
Stochastic Structural Dynamics, Progress in Theory and Applications
, edited by
S. T.
Ariaratnm
,
G. I.
Schueller
, and
I.
Eishakoff
,
Elsevier Appl. Sci.
, pp.
241
291
.
62.
Ghanem
,
R.
, and
Dham
,
S.
, 1998, “
Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media
,”
Transp. Porous Media
0169-3913,
32
, pp.
239
262
.
63.
Matthies
,
H. G.
, and
Bucher
,
C.
, 1999, “
Finite Elements for Stochastic Media Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
168
, pp.
3
17
.
64.
Ghanem
,
R.
, 1999, “
Ingredients for a General Purpose Stochastic Finite Elements Implementation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
168
, pp.
19
34
.
65.
Ostoja-Starzewski
,
M.
, and
Wang
,
X.
, 1999, “
Stochastic Finite Elements as a Bridge Between Random Material Microstructure and Global Response
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
168
, pp.
35
49
.
66.
Eishakoff
,
I.
, and
Ren
,
Y.
, 1999, “
The Bird’s Eye View on Finite Element Method for Structures with Large Stochastic Variations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
168
, pp.
51
61
.
67.
Abdel-Tawab
,
K.
, and
Noor
,
A. K.
, 1999, “
Uncertainty Analysis of Welding Residual Stress Fields
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
179
, pp.
327
344
.
68.
Anders
,
M.
, and
Hori
,
M.
, 2001, “
Three-Dimensional Stochastic Finite Element Method for Elasto-Plastic Bodies
,”
Int. J. Numer. Methods Eng.
0029-5981,
51
, pp.
449
478
.
69.
Babuska
,
I.
,
Tempone
,
R.
, and
Zouraris
,
G. E.
, 2004, “
Galerkin Finite Element Approximations for Stochastic Elliptic Partial Differential Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
42
, pp.
800
825
.
70.
Hlavacek
,
I.
,
Chleboun
,
J.
, and
Babuska
,
I.
, 2004,
Uncertain Input Data Problem and the Worst Scenario Method
,
Elsevier
.
71.
Yang
,
D.
,
Oh
,
S. L.
,
Huh
,
H.
, and
Kim
,
Y. H.
, eds., 2002, “
Numisheet 2002: Design Innovation Through Virtual Manufacturing
,”
Proc. 5th Int. Conf. and Workshop on Numerical Simulation of 3D Sheet Forming Processes - Verification of Simulation with Experiment
, 21–25 October 2002, Jeju Island, Korea, Vol.
2
,
published by Korea Advanced Inst. of Science & Technology (KAIST)
, 373-1,
Science Town, Taejon
,
305
701
, Korea.
72.
Oberkampf
,
W. L.
,
Trucano
,
T. G.
, and
Hirsch
,
C.
, 2002, “
Verification, Validation, and Predictive Capability in Computational Engineering and Physics
,”
Proc. Workshop on Foundations for V & V in the 21st Century
, 22–23 October 2002,
John Hopkins Univ./Appl. Phys. Lab.
,
Laurel, Maryland
, edited by
D.
Pace
and
S.
Stevenson
, published by the Society for Modeling & Simulation International.
73.
ISO, 1993, Guide to the Expression of Uncertainty in Measurement, prepared by ISO Technical Advisory Group 4 (TAG 4), Working Group 3 (WG 3), October 1993. ISO/TAG 4 has as its sponsors the BIPM (Bureau International des Poids et Mesures), IEC (International Electrotechnical Commission), IFCC (International Federation of Clinical Chemistry), ISO, IUPAC (Int. Union of Pure and Applied Chemistry), IUPAP (International Union of Pure and Applied Physics), and OIML (Int. Organization of Legal Metrology).
74.
Taylor
,
B. N.
, and
Kuyatt
,
C. E.
, 1994, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Tech. Note 1297, Sep. 1994 edition (supercedes Jan. 1993 edition), prepared under the auspices of the NIST Ad Hoc Committee on Uncertainty Statements, U.S. Gov’t Printing Office, Washington, DC.
75.
Liu
,
H. K.
, and
Zhang
,
N. F.
, 2002, “
Bayesian Approach to Combining Results from Multiple Methods
,” Proc. Amer. Stat. Assoc., pp.
158
163
.
76.
Box
,
G. E. P.
,
Hunter
,
W. G.
, and
Hunter
,
J. S.
, 1978,
Statistics for Experimenters
,
Wiley
, New York.
77.
Nelson
,
P. R.
,
Coffin
,
M.
, and
Copeland
,
K. A. F.
, 2003,
Introductory Statistics for Engineering Experimentation
.
Elsevier Academic Press
.
78.
Fong
,
J. T.
,
Filliben
,
J. J.
,
Fields
,
R. J.
,
deWit
,
R.
, and
Bernstein
,
B.
, 2004, “
A Reference Benchmark Approach to V & V of Computer Models of High-Consequence Engineering Systems
,”
Proc. NIST-DOD Workshop
, 8–9 November 2004,
Gaithersburg, MD
, pp.
77
94
. A working document of NIST Mathematical & Computational Sciences Division, available upon request at fong@nist.govfong@nist.gov.
79.
Anon
, 1998, Introduction to ABAQUS—Workshop 2 and Answer 2: Linear Statics, pp. W2.1-W2.5, WA2.1-WA2.2, and WR.2, part of a Workshop Course Notes distributed by ABAQUS, Inc., 1080 Main St., Pawtucket, RI 02860-4847.
80.
Pilkey
,
W. D.
, 1994,
Formulas for Stress, Strain, and Structural Matrices
,
Wiley
, pp.
520
521
.
81.
Timoshenko
,
S.
, and
Young
,
D. H.
, 1955,
Vibration Problems in Engineering
, 3rd ed., edited by
D.
Van Nostrand
, p.
338
.
82.
Anon
, 2005, ABAQUS User’s Manual, Version 6.5-5. ABAQUS, Inc., 1080 Main St., Pawtucket, RI 02860-4847.
83.
Anon
, 2005, ANSYS User’s Manual, Release 10.0. ANSYS, Inc., 275 Technology Dr., Cannonsburg, PA 15317.
84.
Anon
, 2003, LS-DYNA Keyword User’s Manual, Version 970, April 2003, Livermore Software Technology Corp., Livermore, CA.
85.
Anon
, 2001, TrueGrid User’s Manual, Version 2.1.0, Vols. 1 & 2, Dec. 26, 2001, XYZ Scientific Applications, Inc., 1324 Concannon Blvd, Livermore, CA.
86.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
, 1959,
Theory of Plates and Shells
, 2nd ed.,
McGraw-Hill
, pp.
422
423
.
87.
Marcal
,
P. V.
, 2005, MPact, MPaveMesh and MPaveModel User’s Manual, Sep. 2005, MPave Corp., 1355 Summit Ave., Cardiff, CA 92007-2429.
88.
Fletcher
,
F. B.
, 1990, “
Carbon and Low-Alloy Steel Plate
,” in
Metals Handbook
, 10th ed., Vol.
1
,
ASM International
, Materials Park, OH 44073, pp.
226
239
.
89.
Fong
,
J. T.
,
Filliben
,
J. J.
,
Fields
,
R. J.
, and
Bernstein
,
B.
, 2002, “
A Stochastic Model of the Collapse of Two Simple Steel Grillages in a Fire: Part 1. Material Property Variability of Two Steels
,” a Working Document of the NIST Mathematical & Computational Sciences Division, Gaithersburg, MD 20899, 25 August 2002, available upon request, fong@nist.govfong@nist.gov.
90.
Filliben
,
J. J.
, and
Heckert
,
N. A.
, 2002, DATAPLOT: A Statistical Data Anal. Software System, a public domain software released by the U.S. National Inst of Standards & Tech (NIST), Gaithersburg, MD 20899, http://www.itl.nist.gov/div898/software/dataplot.htmlhttp://www.itl.nist.gov/div898/software/dataplot.html.
91.
Gelman
,
A.
, and
Meng
,
X. -L.
, 2004, in
Applied Bayesian Modeling and Casual Inference From Incomplete-Data Perspectives
,
Wiley
.
92.
Schafer
,
J. L.
, 1997,
Analysis of Incomplete Multivariate Data
,
Chapman & Hall/CRC
.
You do not currently have access to this content.