In this paper we present the frequency evaluation of spherical shells by means of the generalized differential quadrature method (G.D.Q.M.), an effective numerical procedure which pertains to the class of generalized collocation methods. The shell theory used in this study is a first-order shear deformation theory with transverse shearing deformations and rotatory inertia included. The shell governing equations in terms of mid-surface displacements are obtained and, after expansion in partial Fourier series of the circumferential coordinate, solved with the G.D.Q.M. Several comparisons are made with available results, showing the reliability and modeling capability of the numerical scheme in argument.
Issue Section:
Research Papers
1.
Rayleigh
, Lord
, 1881, “On the Infinitesimal Bending of Surfaces of Revolution
,” Proc. London Math. Soc.
, 13
, pp. 4
–16
.2.
Lamb
, H.
, 1882, “On the Vibrations of a Spherical Shell
,” Proc. London Math. Soc.
, 14
, pp. 50
–56
.3.
Love
, A. E. H.
, 1888, “On the Small Free Vibrations and Deformations of a Thin Elastic Shell
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428, 17
, pp. 491
–546
.4.
Reissner
, E.
, 1955, “On Axisymmetrical Vibrations of Shallow Spherical Shells
,” J. Appl. Math.
1110-757X, 13
, pp. 279
–290
.5.
Kalnins
, A.
, 1960, “On Vibrations of Shallow Spherical Shells
,” J. Acoust. Soc. Am.
0001-4966, 33
, pp. 1102
–1107
.6.
Naghdi
, P. M.
, and Kalnins
, A.
, 1960, “Axisymmetric Free Vibration of Shallow Elastic Spherical Shells
,” J. Acoust. Soc. Am.
0001-4966, 32
, pp. 342
–347
.7.
Naghdi
, P. M.
, and Kalnins
, A.
, 1962, “On Vibration of Elastic Spherical Shells
,” ASME J. Appl. Mech.
0021-8936, 29
, pp. 65
–72
.8.
Sen
, S. K.
, and Gould
, P. L.
, 1974, “Free Vibration of Shells of Revolution Using FEM
,” J. Eng. Mech. Div., Am. Soc. Civ. Eng.
0044-7951, 100
, pp. 283
–303
.9.
Elias
, Z. M.
, 1972, “Mixed Finite Element Method for Axisymmetric Shells
,” Int. J. Numer. Methods Eng.
0029-5981, 4
, pp. 261
–277
.10.
Kim
, J. G.
, 1998, “A Higher-Order Harmonic Element for Shells of Revolution Based on the Modified Mixed Formulation
,” Ph.D. thesis, Dept. of Mechanical Design and Production Engineering, Seoul National University.11.
Kim
, J. G.
, and Kim
, Y. Y.
, 2001, “Higher-Order Hybrid-Mixed Axisymmetric Thick Shell Element for Vibration Analysis
,” Int. J. Numer. Methods Eng.
0029-5981, 51
, pp. 241
–252
.12.
Kim
, J. G.
, and Kim
, Y. Y.
, 2000, “A Higher Order Hybrid-Mixed Harmonic Shell-of-Revolution Element
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 182
, pp. 1
–16
.13.
Bellman
, R.
, 1971, “Differential Quadrature and Long-term Integration
,” J. Math. Anal. Appl.
0022-247X, 34
, pp. 235
–238
.14.
Bellman
, R.
, Kashef
, B. G.
, and Casti
, J.
, 1972, “Differential Quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equations
,” J. Comput. Phys.
0021-9991, 10
, pp. 40
–52
.15.
Bellomo
, N.
, 1997, “Nonlinear Models and Problems in Applied Sciences from Differential Quadrature to Generalized Collocation Methods
,” Math. Comput. Modell.
0895-7177, 26
(4
), pp. 13
–34
.16.
Viola
, E.
, and Artioli
, E.
, 2004, “The G. D. Q. Method for the Harmonic Dynamic Analysis of Rotational Shell Structural Elements
,” Struct. Eng. Mech.
1225-4568, 17
(6
), pp. 789
–817
.17.
Singh
, A. V.
, and Mirza
, S.
, 1985, “Asymmetric Modes and Associated Eigenvalues for Spherical Shells
,” ASME J. Pressure Vessel Technol.
0094-9930, 107
, pp. 77
–82
.18.
Singh
, A. V.
, 1991, “On Vibration of Shells of Revolution Using Bezier Polynomials
,” ASME J. Pressure Vessel Technol.
0094-9930, 113
, pp. 579
–584
.19.
Gould
, P. L.
, 1999, Analysis of Shells and Plates
, Prentice Hall
, Upper Saddle, River, NJ
.20.
Gould
, P. L.
, 1985, Finite Element Analysis of Shells of Revolution
, Pitman Advanced
, New york
.21.
Bert
, C. W.
, and Malik
, M.
, 1996, “Differential Quadrature Method in Computational Mechanics: a Review
,” Appl. Mech. Rev.
0003-6900, 49
, pp. 1
–27
.22.
Redekop
, D.
, and Xu
, B.
, 1999, “Vibration Analysis of Toroidal Panels Using the Differential Quadrature Method
,” Thin-Walled Struct.
0263-8231, 34
, pp. 217
–231
.23.
Shu
, C.
, and Richards
, B. E.
, 1992, “Application of Generalized Quadrature to solve Two-dimensional Incompressible Navier-Stokes Equation
,” Int. J. Numer. Methods Fluids
0271-2091, 15
, pp. 791
–798
.24.
Kunieda
, H.
, 1982, “Flexural Axisymmetric Free Vibrations of a Spherical Dome: Exact Results and Approximate Solutions
,” J. Sound Vib.
0022-460X, 92
(1
), pp. 1
–10
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.