In this paper we present the frequency evaluation of spherical shells by means of the generalized differential quadrature method (G.D.Q.M.), an effective numerical procedure which pertains to the class of generalized collocation methods. The shell theory used in this study is a first-order shear deformation theory with transverse shearing deformations and rotatory inertia included. The shell governing equations in terms of mid-surface displacements are obtained and, after expansion in partial Fourier series of the circumferential coordinate, solved with the G.D.Q.M. Several comparisons are made with available results, showing the reliability and modeling capability of the numerical scheme in argument.

1.
Rayleigh
,
Lord
, 1881, “
On the Infinitesimal Bending of Surfaces of Revolution
,”
Proc. London Math. Soc.
,
13
, pp.
4
16
.
2.
Lamb
,
H.
, 1882, “
On the Vibrations of a Spherical Shell
,”
Proc. London Math. Soc.
,
14
, pp.
50
56
.
3.
Love
,
A. E. H.
, 1888, “
On the Small Free Vibrations and Deformations of a Thin Elastic Shell
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
17
, pp.
491
546
.
4.
Reissner
,
E.
, 1955, “
On Axisymmetrical Vibrations of Shallow Spherical Shells
,”
J. Appl. Math.
1110-757X,
13
, pp.
279
290
.
5.
Kalnins
,
A.
, 1960, “
On Vibrations of Shallow Spherical Shells
,”
J. Acoust. Soc. Am.
0001-4966,
33
, pp.
1102
1107
.
6.
Naghdi
,
P. M.
, and
Kalnins
,
A.
, 1960, “
Axisymmetric Free Vibration of Shallow Elastic Spherical Shells
,”
J. Acoust. Soc. Am.
0001-4966,
32
, pp.
342
347
.
7.
Naghdi
,
P. M.
, and
Kalnins
,
A.
, 1962, “
On Vibration of Elastic Spherical Shells
,”
ASME J. Appl. Mech.
0021-8936,
29
, pp.
65
72
.
8.
Sen
,
S. K.
, and
Gould
,
P. L.
, 1974, “
Free Vibration of Shells of Revolution Using FEM
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
0044-7951,
100
, pp.
283
303
.
9.
Elias
,
Z. M.
, 1972, “
Mixed Finite Element Method for Axisymmetric Shells
,”
Int. J. Numer. Methods Eng.
0029-5981,
4
, pp.
261
277
.
10.
Kim
,
J. G.
, 1998, “
A Higher-Order Harmonic Element for Shells of Revolution Based on the Modified Mixed Formulation
,” Ph.D. thesis, Dept. of Mechanical Design and Production Engineering, Seoul National University.
11.
Kim
,
J. G.
, and
Kim
,
Y. Y.
, 2001, “
Higher-Order Hybrid-Mixed Axisymmetric Thick Shell Element for Vibration Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
51
, pp.
241
252
.
12.
Kim
,
J. G.
, and
Kim
,
Y. Y.
, 2000, “
A Higher Order Hybrid-Mixed Harmonic Shell-of-Revolution Element
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
182
, pp.
1
16
.
13.
Bellman
,
R.
, 1971, “
Differential Quadrature and Long-term Integration
,”
J. Math. Anal. Appl.
0022-247X,
34
, pp.
235
238
.
14.
Bellman
,
R.
,
Kashef
,
B. G.
, and
Casti
,
J.
, 1972, “
Differential Quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
0021-9991,
10
, pp.
40
52
.
15.
Bellomo
,
N.
, 1997, “
Nonlinear Models and Problems in Applied Sciences from Differential Quadrature to Generalized Collocation Methods
,”
Math. Comput. Modell.
0895-7177,
26
(
4
), pp.
13
34
.
16.
Viola
,
E.
, and
Artioli
,
E.
, 2004, “
The G. D. Q. Method for the Harmonic Dynamic Analysis of Rotational Shell Structural Elements
,”
Struct. Eng. Mech.
1225-4568,
17
(
6
), pp.
789
817
.
17.
Singh
,
A. V.
, and
Mirza
,
S.
, 1985, “
Asymmetric Modes and Associated Eigenvalues for Spherical Shells
,”
ASME J. Pressure Vessel Technol.
0094-9930,
107
, pp.
77
82
.
18.
Singh
,
A. V.
, 1991, “
On Vibration of Shells of Revolution Using Bezier Polynomials
,”
ASME J. Pressure Vessel Technol.
0094-9930,
113
, pp.
579
584
.
19.
Gould
,
P. L.
, 1999,
Analysis of Shells and Plates
,
Prentice Hall
,
Upper Saddle, River, NJ
.
20.
Gould
,
P. L.
, 1985,
Finite Element Analysis of Shells of Revolution
,
Pitman Advanced
,
New york
.
21.
Bert
,
C. W.
, and
Malik
,
M.
, 1996, “
Differential Quadrature Method in Computational Mechanics: a Review
,”
Appl. Mech. Rev.
0003-6900,
49
, pp.
1
27
.
22.
Redekop
,
D.
, and
Xu
,
B.
, 1999, “
Vibration Analysis of Toroidal Panels Using the Differential Quadrature Method
,”
Thin-Walled Struct.
0263-8231,
34
, pp.
217
231
.
23.
Shu
,
C.
, and
Richards
,
B. E.
, 1992, “
Application of Generalized Quadrature to solve Two-dimensional Incompressible Navier-Stokes Equation
,”
Int. J. Numer. Methods Fluids
0271-2091,
15
, pp.
791
798
.
24.
Kunieda
,
H.
, 1982, “
Flexural Axisymmetric Free Vibrations of a Spherical Dome: Exact Results and Approximate Solutions
,”
J. Sound Vib.
0022-460X,
92
(
1
), pp.
1
10
.
You do not currently have access to this content.