Past studies from creep tests on uniaxial specimens and Bridgman notch specimens, for a P91 weld metal, showed that anisotropic behavior (more specifically transverse isotropy) occurs in the weld metal, both in terms of creep (steady-state) strain rate behavior and rupture times (viz., damage evolution). This paper describes the development of a finite element (FE) continuum damage mechanics methodology to deal with anisotropic creep and anisotropic damage for weld metal. The method employs a second order damage tensor following the work of Murakami and Ohno (1980, “A Continuum Theory of Creep and Creep Damage,” Creep in Structures, A. R. S. Ponter and D. R. Hayhurst, eds., Springer-Verlag, Berlin, pp. 422–444) along with a novel rupture stress approach to define the evolution of this tensor, taking advantage of the transverse isotropic nature of the weld metal, to achieve a reduction in the number of material constants required from test data (and hence tests) to define the damage evolution. Hill’s anisotropy potential theory is employed to model the secondary creep. The theoretical model is implemented in a material behavior subroutine within the general-purpose nonlinear FE code ABAQUS (ABAQUS User’s Manual, Version 6.6, 6006, Hibbitt, Karlsson and Sorenson, Inc., Providence, RI). The validation of the implementation against established isotropic continuum damage mechanics solutions for the isotropic case is described. A procedure for calibrating the multiaxial damage constants from notched bar test data is described for multiaxial implementations. Also described is a study on the effect of uniaxial specimen orientation on anisotropic damage evolution.

1.
Cheetham
,
D.
,
Fidler
,
R.
,
Jagger
,
M.
, and
Williams
,
J. A.
, 1977, “
Relationship Between Laboratory Data and Service Experience in the Cracking of CrMoV Weldments
,”
Conference on Residual Stresses and Their Effect on Welded Constructions
,
Cambridge, UK
.
2.
Evans
,
G. M.
, and
Bailey
,
N.
, 1997,
Metallurgy of Basic Weld Metal
,
Abington, UK
.
3.
Hall
,
F. R.
, and
Hayhurst
,
D. R.
, 1991, “
Continuum Damage Mechanics Modelling of High Temperature Deformation and Failure in a Pipe Weldment
,”
Proc. R. Soc. London
0962-8444,
A443
, pp.
383
403
.
4.
Brett
,
S. J.
, 1994, “
Cracking Experience in Steam Pipework Welds in National Power
,”
Proceedings of the Conference on Materials and Welding Technology in Power Plants
,
Essen
, Germany, Mar., Lecture 8.
5.
Wilson
,
J. D.
,
Hawkes
,
M.
,
James
,
P.
, and
Pascoe
,
S.
, 2000, “
Degradation in Ageing Power Plant Components
,”
Proceedings of the Conference on Parsons 2000: Advanced Materials for the 21st Century Turbines and Power Plant
,
Cambridge
, UK Jul., pp.
508
522
.
6.
Hyde
,
T. H.
,
Sun
,
W.
, and
Tang
,
A.
, 1998, “
Determination of Material Constants in Creep Continuum Damage Constitutive Equations
,”
Strain J. Brit. Soc. Strain Measurement
0039-2103,
34
(
3
), pp.
83
90
.
7.
Hyde
,
T. H.
,
Sun
,
W.
, and
Williams
,
J. A.
, 1999, “
Creep Behaviour of Parent, Weld and HAZ Materials of New, Service-Aged and Repaired 1/2Cr1/2Mo1/4V:2-1/4Cr1Mo Pipe Welds at 640°C
,”
Mater. High. Temp.
0960-3409,
16
, pp.
117
129
.
8.
Hyde
,
T. H.
,
Sun
,
W.
,
Agyakwa
,
P. A.
,
Shipway
,
P. H.
, and
Williams
,
J. A.
, 2002, “
Anisotropic Creep and Fracture Behaviour of a 9MV Weld Metal at 650°C
,”
Anisotropic Behaviour of Damaged Materials
,
J. J.
Skrzypek
and
A.
Ganczarski
, eds.,
Springer-Verlag
,
Berlin
, Chap. 9.
9.
Yamazaki
,
M.
,
Hongo
,
H.
,
Watanabe
,
T.
,
Kinugawa
,
J.
,
Tanabe
,
T.
, and
Monma
,
Y.
, 1999, “
Heterogeneity of Creep Properties of Welds in 304 Stainless Steel Plate
,”
J. Soc. Mater. Sci. Jpn.
0514-5163,
48
, pp.
110
115
.
10.
Hyde
,
T. H.
,
Jones
,
I. A.
,
Peravali
,
S.
,
Sun
,
W.
,
Wang
,
J. G.
, and
Leen
,
S. B.
, 2005, “
Anisotropic Creep Behaviour of Bridgman Notch Specimens
,”
Proc. Inst. Mech. Eng., Part L: J. Materials: Design & Applications
,
219
, pp.
163
175
.
11.
Hyde
,
T. H.
,
Peravali
,
S.
, and
Leen
,
S. B.
, 2007, “
The Effect of Weld Metal Anisotropy on the Creep of a Pressurized, Circumferentially Welded Pipe
,”
Proc. Inst. Mech. Eng., Part L: J. Materials: Design & Applications
,
221
(
L2
), pp.
77
92
.
12.
Murakami
,
S.
, and
Ohno
,
N.
, 1980, “
A Continuum Theory of Creep and Creep Damage
,”
Creep in Structures
,
A. R. S.
Ponter
and
D. R.
Hayhurst
, eds.,
Springer-Verlag
,
Berlin
, pp.
422
444
.
13.
Murakami
,
S.
, 1988, “
Mechanical Modelling of Material Damage
,”
ASME J. Appl. Mech.
0021-8936,
55
(
6
), pp.
280
286
.
14.
Ohashi
,
Y.
,
Ohno
,
N.
, and
Kawai
,
M.
, 1982, “
Evaluation of Creep Constitutive Equations for Type 304 Stainless Steel Under Repeated Multiaxial Loading
,”
ASME J. Eng. Mater. Technol.
0094-4289,
107
, pp.
1
6
.
15.
Zolochevsky
,
A. A.
, 1991, “
Creep of Isotropic and Anisotropic Materials With Different Behaviour in Tension and Compression
,”
Creep in Structures
,
M.
Zyczkowski
, ed.,
Springer-Verlag
,
Berlin
, pp.
217
220
.
16.
Perrin
,
I. J.
, and
Hayhurst
,
D. R.
, 1996, “
Creep Constitutive Equations for a 0.5Cr-0.5Mo-0.25V Ferritic Steel in the Temperature Range 600–675°C
,”
J. Strain Anal. Eng. Des.
0309-3247,
31
(
4
), pp.
299
314
.
17.
ABAQUS User’S Manual, Version 6.6, 2006,
Hibbitt, Karlsson and Sorenson
, Inc., Providence, RI.
18.
Moberg
,
F.
, 1995, “
Implementation of Constitutive Equations for Creep Damage Mechanics Into the ABAQUS Finite Element Code
,” SAQ/FoU-Report 95/05.
19.
Hayhurst
,
D. R.
, 1983, “
The Role of Creep Damage in Structural Mechanics
,”
Engineering Approach to High Temperature
,
B.
Wilshire
and
D. R. J.
Owen
, eds.,
Pineridge
,
Swansea, UK
, pp.
85
176
.
20.
Sun
,
W.
,
Hyde
,
T. H.
,
Becker
,
A. A.
, and
Williams
,
J. A.
, 2000, “
Comparison of the Creep and Damage Failure Prediction of the New, Service-Aged and Repaired Thick-Walled Circumferential CrMoV Pipe Welds Using Material Properties at 40°C
,”
Int. J. Pressure Vessels Piping
0308-0161,
77
(
7
), pp.
389
398
.
21.
Hayhurst
,
D. R.
, 1972, “
Creep Rupture Under Multiaxial States of Stress
,”
J. Mech. Phys. Solids
0022-5096,
20
, pp.
381
390
.
22.
Hayhurst
,
D. R.
, and
Miller
,
D. A.
, 1998, “
The Use of Creep Continuum Damage Mechanics to Predict Evaluation and Failure in Welded Vessels
,”
Remnant Life Prediction
, IMechE Seminar Publication No. 117.
23.
Betten
,
J.
, 1983, “
Damage Tensors in Continuum Mechanics
,”
J. Mec. Theor. Appl.
0750-7240,
2
, pp.
13
32
.
You do not currently have access to this content.