In this paper, a sensing device specifically for measuring deformations of high temperature pipes is designed, and its applicability is verified both experimentally and theoretically. First, the design procedure and the working principle of the sensing device are described in detail. Then, experiments are carried out to prove the accuracy and the long-term stability of the sensing device. To verify the accuracy of the device, numerical simulation of the deformation of a pipe model is carried out using finite element method. Results from the experimental measurements are in good agreement with results from the numerical simulation. The long-term stability of the device is validated by monitoring the deformation. Conclusions are drawn that the designed sensing device has high accuracy and excellent stability and can be used for measuring deformations of high temperature pipes in power plants.

1.
Burstein
,
L.
, and
Segal
,
L.
, 2004, “
Prediction of Machine Residual Service Life: Method and Computing
,”
NDT & E Int.
,
37
, pp.
517
523
.
2.
Starke
,
P.
,
Walther
,
F.
, and
Eifler
,
D.
, 2006, “
PHYBAL—A New Method for Lifetime Prediction Based on Strain, Temperature and Electrical Measurements
,”
Int. J. Fatigue
0142-1123,
28
(
9
), pp.
1028
1036
.
3.
Liu
,
X.
,
Xuan
,
F. -Z.
,
Si
,
J.
, and
Tu
,
S. -T.
, 2008, “
Expert System for Remnant Life Prediction of Defected Components Under Fatigue and Creep-Fatigue Loadings
,”
Expert Sys. Applic.
0957-4174,
34
(
1
), pp.
222
230
.
4.
Khosrowl
,
Z.
, and
Lawrencel
,
N.
, 2008, “
A Novel and Simple Approach for Predicting Creep Life Based on Tertiary Creep Behavior
,”
ASME J. Pressure Vessel Technol.
0094-9930,
130
(
4
), p.
0412011
.
5.
Sih
,
G. C.
,
Tu
,
S. T.
, and
Wang
,
Z. D.
, 2009, “
Life Prediction and Monitoring of Critical Industrial Equipment
,”
Transferability and Applicability of Current Mechanics Approaches
,
ECUST
,
Shanghai
, pp.
13
22
.
6.
Cane
,
B. J.
, 1982, “
Remaining Creep Life Estimation by Strain Assessment on Plant
,”
Int. J. Pressure Vessels Piping
0308-0161,
10
(
1
), pp.
11
30
.
7.
Tu
,
S. T.
,
Segle
,
P.
, and
Gong
,
J. M.
, 2004, “
Creep Damage and Fracture of Weldments at High Temperature
,”
Int. J. Pressure Vessels Piping
0308-0161,
81
(
2
), pp.
199
209
.
8.
Borodii
,
M. V.
, and
Adamchuk
,
M. P.
, 2009, “
Life Assessment for Metallic Materials With the Use of the Strain Criterion for Low-Cycle Fatigue
,”
Int. J. Fatigue
0142-1123,
31
(
10
), pp.
1579
1587
.
9.
Kang
,
D. H.
,
Kim
,
C. U.
, and
Kim
,
C. G.
, 2006, “
The Embedment of Fiber Bragg Grating Sensors Into Filament Wound Pressure Tanks Considering Multiplexing
,”
NDT & E Int.
,
39
(
2
), pp.
109
116
.
10.
Gong
,
Y. D.
, 2007, “
Guideline for the Design of a Fiber Optic Distributed Temperature and Strain Sensor
,”
Opt. Commun.
0030-4018,
272
(
1
), pp.
227
237
.
11.
Dziuda
,
L.
,
Fusiek
,
G.
,
Niewczas
,
P.
,
Burt
,
G. M.
, and
McDonald
,
J. R.
, 2007, “
Laboratory Evaluation of the Hybrid Fiber-Optic Current Sensor
,”
Sens. Actuators, A
0924-4247,
136
(
1
), pp.
184
190
.
12.
Chu
,
F.
,
Yang
,
J.
,
Cai
,
H.
,
Qu
,
R.
, and
Fang
,
Z.
, 2009, “
Characterization of a Dissolved Oxygen Sensor Made of Plastic Optical Fiber Coated With Ruthenium-Incorporated Solgel
,”
Appl. Opt.
0003-6935,
48
(
2
), pp.
338
342
.
13.
Melik
,
R.
,
Unal
,
E.
,
Perkgoz
,
N. K.
,
Puttlitz
,
C.
, and
Demir
,
H. V.
, 2009, “
Metamaterial-Based Wireless Strain Sensors
,”
Appl. Phys. Lett.
0003-6951,
95
(
1
), p.
011106
.
14.
Gregory
,
O. J.
, and
Chen
,
X. M.
, 2007, “
A Low TCR Nanocomposite Strain Gage for High Temperature Aerospace Applications
,”
The Sixth IEEE Conference on Sensors
, pp.
624
627
.
15.
Xuan
,
F. Z.
,
Tang
,
H. W.
, and
Tu
,
S. T.
, 2009, “
In Situ Monitoring on Prestress Losses in the Reinforced Structure With Fiber-Optic Sensors
,”
Measurement
0263-2241,
42
, pp.
107
111
.
16.
Baumann
,
B.
, and
Schulz
,
M.
, 1991, “
Long-Time High-Temperature Strain Gauge Measurements on Pipes and Dissimilar Welds for Residual Lifetime Evaluation
,”
Nucl. Eng. Des.
0029-5493,
130
(
3
), pp.
383
388
.
17.
Lei
,
J. -F.
, and
Will
,
H. A.
, 1998, “
Thin-Film Thermocouples and Strain-Gauge Technologies for Engine Applications
,”
Sens. Actuators, A
0924-4247,
65
, pp.
187
193
.
18.
Tu
,
S. T.
,
Gong
,
J. M.
,
Ling
,
X.
, and
He
,
X. Y.
, 2001, “
Long-Term Measurement of Local Creep Deformation by Optical Fiber Marking and Remote Monitoring
,”
ASTM Spec. Tech. Publ.
0066-0558,
1402
, pp.
184
192
.
19.
Morris
,
A.
,
Dear
,
J.
, and
Kourmpetis
,
M.
, 2006, “
High Temperature Steam Pipelines—Development of the ARCMAC Creep Monitoring System
,”
Strain
,
42
, pp.
181
185
.
20.
Singleton
,
K.
, 2005, “
Creep Monitoring in High Temperature Steam Pipes
,” MEng Final Year Project, Imperial College London.
21.
He
,
T.
,
Yang
,
J.
, and
Jin
,
X.
, ANSYS, Version 10.0, product of ANSYS, Inc.
22.
Qin
,
X. Z.
, and
Teng
,
M. D.
, 1995,
World Steel Manual for Pressure Vessels
,
China Machine
,
Beijing
.
23.
Shi
,
Y. P.
,
Zhou
,
Y. R.
, ABAQUS, Version 6.9, product of ABAQUS, Inc.
24.
Tu
,
S. T.
, 2003,
High Temperature Structural Integrity
,
Chinese Science Press
,
Beijing
.
You do not currently have access to this content.