Online monitoring of temperature and thermal stresses is an important way to ensure the safety of power plants considering fatigue and creep damages. The effect of online monitoring is determined by the accuracy and calculating time of monitoring models. In this paper, the improved first-order analytical models of temperature and thermal stresses considering temperature-dependent material properties have been derived by using homotopy analysis method (HAM) and superposition principle. The optimal convergence control parameters are obtained by calculating the mean-square residual errors. The validity and accuracy of the proposed models were proved by results comparisons with finite element method (FEM) and artificial parameter method.
Issue Section:
Design and Analysis
References
1.
Payten
, W. M.
, Snowden
, K. U.
, and Bendeich
, P.
, 2010
, “The Use of a Simplified Analytical Expression for Metastable Thermal Stress Analysis and Its Application to Creep-Fatigue Damage of a 2.25Cr1Mo Thick Walled Component
,” Int. J. Fatigue
, 32
(2
), pp. 368
–375
.2.
Farragher
, T. P.
, Scully
, S.
, O'Dowd
, N. P.
, and Leen
, S. B.
, 2013
, “Development of Life Assessment Procedures for Power Plant Headers Operated Under Flexible Loading Scenarios
,” Int. J. Fatigue
, 49
, pp. 50
–61
.3.
Benato
, A.
, Stoppato
, A.
, and Bracco
, S.
, 2014
, “Combined Cycle Power Plants: A Comparison Between Two Different Dynamic Models to Evaluate Transient Behaviour and Residual Life
,” Energy Convers. Manage.
, 87
, pp. 1269
–1280
.4.
Zucca
, S.
, Botto
, D.
, and Gola
, M. M.
, 2004
, “Faster On-Line Calculation of Thermal Stresses by Time Integration
,” Int. J. Pressure Vessels Piping
, 81
(5
), pp. 393
–399
.5.
Zhang
, H.
, 2015
, “Online Thermal Monitoring Models for Induction Machines
,” IEEE Trans. Energy Convers.
, 30
(4
), pp. 1279
–1287
.6.
Mukhopadhyay
, N. K.
, Dutta
, B. K.
, and Kushwaha
, H. S.
, 2001
, “On-Line Fatigue–Creep Monitoring System for High-Temperature Components of Power Plants
,” Int. J. Fatigue
, 23
(6
), pp. 549
–560
.7.
Zhang
, H.
, Nie
, C.
, Xiong
, Y.
, Xie
, D.
, and Yu
, Y.
, 2012
, “Approximate Analytical Models of Temperature and Thermal Stresses for 2D Axis-Symmetry Object With Temperature-Dependent Properties
,” Int. J. Therm. Sci.
, 53
, pp. 100
–107
.8.
Koo
, G. H.
, Kwon
, J. J.
, and Kim
, W.
, 2009
, “Green's Function Method With Consideration of Temperature Dependent Material Properties for Fatigue Monitoring of Nuclear Power Plants
,” Int. J. Pressure Vessels Piping
, 86
(2–3
), pp. 187
–195
.9.
Fernandes
, A. P.
, Sousa
, P. F. B.
, Borges
, V. L.
, and Guimaraes
, G.
, 2010
, “Use of 3D-Transient Analytical Solution Based on Green's Function to Reduce Computational Time in Inverse Heat Conduction Problems
,” Appl. Math. Modell.
, 34
(12
), pp. 4040
–4049
.10.
Zhang
, H.
, Xiong
, Y.
, Nie
, C.
, Xie
, D.
, and Sun
, K.
, 2012
, “A Methodology for Online Fatigue Monitoring With Consideration of Temperature-Dependent Material Properties Using Artificial Parameter Method
,” ASME J. Pressure Vessel Technol.
, 134
(1
), p. 011201
.11.
Odibat
, Z. M.
, 2010
, “A Study on the Convergence of Homotopy Analysis Method
,” Appl. Math. Comput.
, 217
(2
), pp. 782
–789
.12.
Liao
, S. J.
, and Tan
, Y.
, 2007
, “A General Approach to Obtain Series Solutions of Nonlinear Differential Equations
,” Stud. Appl. Math.
, 119
(4
), pp. 297
–355
.13.
Liao
, S. J.
, 1997
, “A Kind of Approximate Solution Technique Which Does Not Depend Upon Small Parameters (II): An Application in Fluid Mechanics
,” Int. J. Non-Linear Mech.
, 32
(5
), pp. 815
–22
.14.
Liao
, S. J.
, 2010
, “An Optimal Homotopy-Analysis Approach for Strongly Nonlinear Differential Equations
,” Commun. Nonlinear Sci. Numer. Simul.
, 15
(8
), pp. 2003
–2016
.Copyright © 2017 by ASME
You do not currently have access to this content.