A hybrid friction model has been developed by Azizian and Mureithi (2013, “A Hybrid Friction Model for Dynamic Modeling of Stick–Slip Behavior,” ASME Paper No. PVP2013-97249) to simulate the general friction behavior between surfaces in contact. However, identification of the model parameters remains an unresolved problem. To identify the parameters of the friction model, the following quantities are required: contact forces (normal and tangential or friction forces), the slip velocity, and the displacement in the contact region. Simultaneous direct measurement of these quantities is difficult. In the present work, a beam clamped at one end and simply supported with the consideration of friction at the other is used as a mechanical amplifier of the friction effects at the microscopic level. Using this simplified approach, the contact forces, the sliding velocity, and the displacement can be indirectly obtained by measuring the beam vibration response. The inverse harmonic balance method is a new method based on nonlinear modal analysis which is developed in this work to calculate the contact forces. The method is based on the modal superposition principle and Fourier series expansion. Two formulations are possible: a harmonic form formulation and a subharmonic form formulation. The approach based on subharmonic forms coupled with spline fitting gave the best results for signal reconstruction. Signal reconstruction made it possible to accurately identify the parameters of the hybrid friction model with a multiple step approach.

References

1.
Hadji
,
A.
, and
Mureithi
,
N.
,
2014
, “
Nonlinear Normal Modes and the Dahl Friction Model Parameter Identification
,”
ASME
Paper No. PVP2014-28733.
2.
Hadji
,
A.
, and
Mureithi
,
N.
,
2014
, “
Nonlinear Normal Modes and the LuGre Friction Model Parameter Identification
,”
ASME
Paper No. IMECE2014-38997.
3.
Hassan
,
M.
, and
Rogers
,
R. J.
,
2005
, “
Friction Modelling of Preloaded Tube Contact Dynamics
,”
Nucl. Eng. Des.
,
235
(
22
), pp.
2349
2357
.
4.
Rogers
,
R. J.
, and
Pick
,
R. J.
,
1977
, “
Factors Associated With Support Plate Forces Due to Heat-Exchanger Tube Vibratory Contact
,”
Nucl. Eng. Des.
,
44
(
2
), pp.
247
253
.
5.
Xi
,
T.
, and
Rogers
,
R. J.
,
1996
, “
Dynamic Friction Modelling in Heat Exchanger Tube Simulations
,”
ASME Pressure Vessels and Piping Conference
, Montreal, QC, Canada, July 21–26, pp.
347
358
.
6.
Antunes
,
J.
,
Axisa
,
F.
,
Beaufils
,
B.
, and
Guilbaud
,
D.
,
1988
, “
Coulomb Friction Modelling in Numerical Simulations of Vibration and Wear Work Rate of Multispan Tube Bundles
,”
International Symposium on Flow-Induced Vibration and Noise: Flow-Induced Vibration in Heat-Transfer Equipment
, Chicago, IL, Nov. 27–Dec. 2, American Society of Mechanical Engineers (ASME), New York, pp.
157
176
.
7.
Karnopp
,
D.
,
1985
, “
Computer Simulation of Stick–Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
100
103
.
8.
Azizian
,
R.
, and
Mureithi
,
N.
,
2013
, “
A Hybrid Friction Model for Dynamic Modeling of Stick–Slip Behavior
,”
ASME
Paper No. PVP2013-97249.
9.
Azizian
,
R.
,
2012
, “
Dynamic Modeling of Tube–Support Interaction in Heat Exchangers
,”
Ph.D. thesis
, Université De Montréal, École Polytechnique De Montréal, Montréal, QC, Canada.
10.
Dahl
,
P. R.
,
1976
, “
Solid Friction Damping of Mechanical Vibrations
,”
AIAA J.
,
14
(
12
), pp.
1675
1682
.
11.
Canudas
,
C. D. W.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.
12.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
13.
Ödfalk
,
M.
, and
Vingsbo
,
O.
,
1992
, “
An Elastic–Plastic Model for Fretting Contact
,”
Wear
,
157
(
2
), pp.
435
444
.
14.
Hadji
,
A.
, and
Mureithi
,
N.
,
2015
, “
Validation of Friction Model Parameters Identified Using the Inverse Harmonic Balance Method
,”
ASME
Paper No. PVP2015-45627.
15.
Gilmore
,
R. J.
, and
Steer
,
M. B.
,
1991
, “
Nonlinear Circuit Analysis Using the Method of Harmonic Balance. A Review of the Art. Part I. Introductory Concepts
,”
Int. J. Microwave Millimeter-Wave Comput.-Aided Eng.
,
1
(
1
), pp.
22
37
.
16.
Rosenberg
,
R. M.
,
1966
, “
On Nonlinear Vibrations of Systems With Many Degrees of Freedom
,”
Advances in Applied Mechanics
,
H. L.
Dryden
,
P.
Germain
,
L.
Howarth
,
W.
Olszak
,
W.
Prager
,
R. F.
Probstein
,
G. G.
Chernyi
, and
H.
Ziegler
, eds.,
Elsevier
, Amsterdam, The Netherlands, pp.
155
242
.
17.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1992
, “
On Nonlinear Normal Modes
,”
Winter Annual Meeting of the American Society of Mechanical Engineers
, Anaheim, CA, Nov. 8–13, ASME, New York.
18.
Boivin
,
N.
,
Pierre
,
C.
, and
Shaw
,
S.
,
1994
, “
Non-Linear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds
,”
AIAA
Paper No. 94-1672-CP.
19.
Pesheck
,
E.
,
Boivin
,
N.
,
Pierre
,
C.
, and
Shaw
,
S.
,
2001
, “
Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds
,”
Nonlinear Dyn.
,
25
(
1–3
), pp.
183
205
.
20.
Jalali
,
H.
,
Ahmadian
,
H.
, and
Pourahmadian
,
F.
,
2011
, “
Identification of Micro-Vibro-Impacts at Boundary Condition of a Nonlinear Beam
,”
Mech. Syst. Signal Process.
,
25
(
3
), pp.
1073
1085
.
21.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory, Practice, and Application
,
Research Studies Press
,
Baldock, Hertfordshire, UK
.
22.
Stribeck
,
R.
,
1902
, “
Die wesentlichen Eigenschaften der Gleitund Rollenlarger: The Key Qualities of Sliding and Roller Bearings
,”
Z. Vereines Deutsch Ingen.
, 46(38–39), 1342–1348, 1432–1437.
23.
Haessig
,
D.
, Jr.
, and
Friedland
,
B.
,
1991
, “
On the Modeling and Simulation of Friction
,”
ASME J. Dyn. Syst., Meas., Control
,
113
(
3
), pp.
354
362
.
24.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
ASME J. Appl. Mech.
,
20
(
3
), pp.
327
344
.
25.
MathWorks
,
2011
, “
matlab Optimization Toolbox
,” Release 2011a, The MathWorks, Inc., Natick, MA.
You do not currently have access to this content.