Quasi-static stress–strain relationship of polyethylene (PE) pressure pipe that plays an important role on its long-term performance has been established by removing the viscous stress component from the experimentally measured total stress. Work reported here is focused on the influence of crosshead speed on the notched pipe ring (NPR) specimens that are prepared from PE pressure pipe of 2 in. in diameter. Viscous component of the stress–strain relationship was determined using a spring–damper–plastic element model, calibrated using results from stress relaxation tests. Crosshead speeds considered for the initial stretch of the stress relaxation tests are 0.01, 1, and 10 mm/min which due to the relatively uniform deformation in the gauge section generate the same order of difference in the strain rates. Results from the study suggest that the quasi-static stress–strain relationship is affected by the crosshead speed used to generate the deformation, and the trend of change is opposite to the total stress counterpart that includes the viscous component.

References

1.
Kiass
,
N.
,
Khelif
,
R.
,
Boulanouar
,
L.
, and
Chaoui
,
K.
,
2005
, “
Experimental Approach to Mechanical Property Variability Through a High-Density Polyethylene Gas Pipe Wall
,”
J. Appl. Polym. Sci.
,
97
(
1
), pp.
272
281
.
2.
Azevedo
,
C. R.
,
2007
, “
Failure Analysis of a Crude Oil Pipeline
,”
Eng. Failure Anal.
,
14
(
6
), pp.
978
994
.
3.
Shalaby
,
H. M.
,
Riad
,
W. T.
,
Alhazza
,
A. A.
, and
Behbehani
,
M. H.
,
2006
, “
Failure Analysis of Fuel Supply Pipeline
,”
Eng. Failure Anal.
,
13
(
5
), pp.
789
796
.
4.
Majid
,
Z. A.
,
Mohsin
,
R.
,
Yaacob
,
Z.
, and
Hassan
,
Z.
,
2010
, “
Failure Analysis of Natural Gas Pipes
,”
Eng. Failure Anal.
,
17
(
4
), pp.
818
837
.
5.
Peacock
,
A.
,
2000
,
Handbook of Polyethylene: Structures: Properties, and Applications
,
CRC Press
, Boca Raton, FL.
6.
Hillmansen
,
S.
,
Hobeika
,
S.
,
Haward
,
R.
, and
Leevers
,
P.
,
2000
, “
The Effect of Strain Rate, Temperature, and Molecular Mass on the Tensile Deformation of Polyethylene
,”
Polym. Eng. Sci.
,
40
(
2
), pp.
481
489
.
7.
Dusunceli
,
N.
, and
Colak
,
O. U.
,
2006
, “
High Density Polyethylene (HDPE): Experiments and Modeling
,”
Mech. Time-Depend. Mater.
,
10
(
4
), pp.
331
345
.
8.
Colak
,
O. U.
, and
Dusunceli
,
N.
,
2006
, “
Modeling Viscoelastic and Viscoplastic Behavior of High Density Polyethylene (HDPE)
,”
ASME J. Eng. Mater. Technol.
,
128
(
4
), pp.
572
578
.
9.
Ayoub
,
G.
,
Zaïri
,
F.
,
Naït-Abdelaziz
,
M.
, and
Gloaguen
,
J. M.
,
2010
, “
Modelling Large Deformation Behaviour Under Loading–Unloading of Semicrystalline Polymers: Application to a High Density Polyethylene
,”
Int. J. Plast.
,
26
(
3
), pp.
329
347
.
10.
Hiss
,
R.
,
Hobeika
,
S.
,
Lynn
,
C.
, and
Strobl
,
G.
,
1999
, “
Network Stretching, Slip Processes, and Fragmentation of Crystallites During Uniaxial Drawing of Polyethylene and Related Copolymers. A Comparative Study
,”
Macromolecules
,
32
(
13
), pp.
4390
4403
.
11.
Zhang
,
C.
, and
Moore
, I
. D.
,
1997
, “
Nonlinear Mechanical Response of High Density Polyethylene—Part I: Experimental Investigation and Model Evaluation
,”
Polym. Eng. Sci.
,
37
(
2
), pp.
404
413
.
12.
Zhong
,
S.
,
Shi
,
J.
, and
Zheng
,
J.
,
2013
, “
Study on Constitutive Modeling for Large Deformation Behavior of Polyethylene Considering Strain Rate Effect
,”
ASME
Paper No. PVP2013-97778.
13.
Drozdov
,
A. D.
, and
Christiansen
,
J. d.
,
2008
, “
Thermo-Viscoelastic and Viscoplastic Behavior of High-Density Polyethylene
,”
Int. J. Solids Struct.
,
45
(
14–15
), pp.
4274
4288
.
14.
G'Sell
,
C.
,
Hiver
,
J. M.
,
Dahoun
,
A.
, and
Souahi
,
A.
,
1992
, “
Video-Controlled Tensile Testing of Polymers and Metals Beyond the Necking Point
,”
J. Mater. Sci.
,
27
(
18
), pp.
5031
5039
.
15.
Drozdov
,
A. D.
, and
Yuan
,
Q.
,
2003
, “
The Viscoelastic and Viscoplastic Behavior of Low-Density Polyethylene
,”
Int. J. Solids Struct.
,
40
(
10
), pp.
2321
2342
.
16.
Ritchie
,
S.
,
2000
, “
A Model for the Large-Strain Deformation of Polyethylene
,”
J. Mater. Sci.
,
35
(
23
), pp.
5829
5837
.
17.
Dasari
,
A.
, and
Misra
,
R. D. K.
,
2003
, “
On the Strain Rate Sensitivity of High Density Polyethylene and Polypropylenes
,”
Mater. Sci. Eng.: A
,
358
(
1–2
), pp.
356
371
.
18.
Jar
,
P. Y. B.
,
2014
, “
Transition of Neck Appearance in Polyethylene and Effect of the Associated Strain Rate on the Damage Generation
,”
Polym. Eng. Sci.
,
54
(
8
), pp.
1871
1878
.
19.
Zhang
,
Y.
, and
Jar
,
P. Y. B.
,
2015
, “
Phenomenological Modelling of Tensile Fracture in PE Pipe by Considering Damage Evolution
,”
Mater. Des.
,
77
, pp.
72
82
.
20.
Muhammad
,
S.
, and
Jar
,
P. Y. B.
,
2011
, “
Effect of Aspect Ratio on Large Deformation and Necking of Polyethylene
,”
J. Mater. Sci.
,
46
(
4
), pp.
1110
1123
.
21.
Rafiee
,
R.
,
2013
, “
Apparent Hoop Tensile Strength Prediction of Glass Fiber-Reinforced Polyester Pipes
,”
J. Compos. Mater.
,
47
, pp.
1377
1386
.
22.
Shlitsa
,
R. P.
, and
Novikova
,
E. A.
,
1983
, “
Characteristics of the Use of the Split-Disk Method for Investigating Modern Winding Composites
,”
Mech. Compos. Mater.
,
18
(
4
), pp.
502
508
.
23.
Chen
,
J. F.
,
Li
,
S. Q.
,
Bisby
,
L. A.
, and
Ai
,
J.
,
2011
, “
FRP Rupture Strains in the Split-Disk Test
,”
Composites, Part B
,
42
(
4
), pp.
962
972
.
24.
Hong
,
K.
, and
Strobl
,
G.
,
2008
, “
Characterizing and Modeling the Tensile Deformation of Polyethylene: The Temperature and Crystallinity Dependences
,”
Polym. Sci. Ser. A
,
50
(
5
), pp.
483
493
.
25.
Hong
,
K.
,
Rastogi
,
A.
, and
Strobl
,
G.
,
2004
, “
A Model Treating Tensile Deformation of Semicrystalline Polymers: Quasi-Static Stress–Strain Relationship and Viscous Stress Determined for a Sample of Polyethylene
,”
Macromolecules
,
37
(
26
), pp.
10165
10173
.
26.
Na
,
B.
,
Zhang
,
Q.
,
Fu
,
Q.
,
Men
,
Y.
,
Hong
,
K.
, and
Strobl
,
G.
,
2006
, “
Viscous-Force-Dominated Tensile Deformation Behavior of Oriented Polyethylene
,”
Macromolecules
,
39
(
7
), pp.
2584
2591
.
27.
Zhang
,
Y.
, and
Jar
,
P. Y. B.
,
2015
, “
Quantitative Assessment of Deformation-Induced Damage in Polyethylene Pressure Pipe
,”
Polym. Test.
,
47
, pp.
42
50
.
28.
Yeh
,
I.-C.
,
Andzelm
,
J. W.
, and
Rutledge
,
G. C.
,
2015
, “
Mechanical and Structural Characterization of Semicrystalline Polyethylene Under Tensile Deformation by Molecular Dynamics Simulations
,”
Macromolecules
,
48
(
12
), pp.
4228
4239
.
29.
Lee
,
S.
, and
Rutledge
,
G. C.
,
2011
, “
Plastic Deformation of Semicrystalline Polyethylene by Molecular Simulation
,”
Macromolecules
,
44
(
8
), pp.
3096
3108
.
30.
Addiego
,
F.
,
Dahoun
,
A.
,
G'Sell
,
C.
, and
Hiver
,
J.-M.
,
2006
, “
Characterization of Volume Strain at Large Deformation Under Uniaxial Tension in High-Density Polyethylene
,”
Polymer
,
47
(
12
), pp.
4387
4399
.
31.
Blaise
,
A.
,
Baravian
,
C.
,
André
,
S. p.
,
Dillet
,
J. r. m.
,
Michot
,
L. J.
, and
Mokso
,
R.
,
2010
, “
Investigation of the Mesostructure of a Mechanically Deformed HDPE by Synchrotron Microtomography
,”
Macromolecules
,
43
(
19
), pp.
8143
8152
.
32.
Xiao
,
X.
,
2008
, “
On the Measurement of True Fracture Strain of Thermoplastics Materials
,”
Polym. Test.
,
27
(
3
), pp.
284
295
.
33.
El-Bagory
,
T. M. A. A.
,
Sallam
,
H. E. M.
, and
Younan
,
M. Y. A.
,
2014
, “
Effect of Strain Rate, Thickness, Welding on the J–R Curve for Polyethylene Pipe Materials
,”
Theor. Appl. Fract. Mech.
,
74
, pp.
164
180
.
34.
El-Bagory
,
T. M. A. A.
,
Alkanhal
,
T. A. R.
, and
Younan
,
M. Y. A.
,
2015
, “
Effect of Specimen Geometry on the Predicted Mechanical Behavior of Polyethylene Pipe Material
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061202
.
35.
Dasari
,
A.
, and
Misra
,
R. D. K.
,
2004
, “
Microscopic Aspects of Surface Deformation and Fracture of High Density Polyethylene
,”
Mater. Sci. Eng.: A
,
367
(
1–2
), pp.
248
260
.
36.
Pawlak
,
A.
,
2007
, “
Cavitation During Tensile Deformation of High-Density Polyethylene
,”
Polymer
,
48
(
5
), pp.
1397
1409
.
37.
Hossain
,
D.
,
Tschopp
,
M. A.
,
Ward
,
D. K.
,
Bouvard
,
J. L.
,
Wang
,
P.
, and
Horstemeyer
,
M. F.
,
2010
, “
Molecular Dynamics Simulations of Deformation Mechanisms of Amorphous Polyethylene
,”
Polymer
,
51
(
25
), pp.
6071
6083
.
38.
Castagnet
,
S.
,
Gacougnolle
,
J.-L.
, and
Dang
,
P.
,
2000
, “
Correlation Between Macroscopical Viscoelastic Behaviour and Micromechanisms in Strained α Polyvinylidene Fluoride (PVDF)
,”
Mater. Sci. Eng.: A
,
276
(
1
), pp.
152
159
.
39.
Hobeika
,
S.
,
Men
,
Y.
, and
Strobl
,
G.
,
2000
, “
Temperature and Strain Rate Independence of Critical Strains in Polyethylene and Poly(Ethylene-Co-Vinyl Acetate)
,”
Macromolecules
,
33
(
5
), pp.
1827
1833
.
40.
Patlazhan
,
S.
, and
Remond
,
Y.
,
2012
, “
Structural Mechanics of Semicrystalline Polymers Prior to the Yield Point: A Review
,”
J. Mater. Sci.
,
47
(
19
), pp.
6749
6767
.
41.
Jiang
,
Z.
,
Tang
,
Y.
,
Rieger
,
J.
,
Enderle
,
H.-F.
,
Lilge
,
D.
,
Roth
,
S. V.
,
Gehrke
,
R.
,
Heckmann
,
W.
, and
Men
,
Y.
,
2010
, “
Two Lamellar to Fibrillar Transitions in the Tensile Deformation of High-Density Polyethylene
,”
Macromolecules
,
43
(
10
), pp.
4727
4732
.
42.
Peres
,
F. M.
, and
Schön
,
C. G.
,
2007
, “
An Alternative Approach to the Evaluation of the Slow Crack Growth Resistance of Polyethylene Resins Used for Water Pipe Extrusion
,”
J. Polym. Res.
,
14
(
3
), pp.
181
189
.
43.
Krishnaswamy
,
R. K.
,
2005
, “
Analysis of Ductile and Brittle Failures From Creep Rupture Testing of High-Density Polyethylene (HDPE) Pipes
,”
Polymer
,
46
(
25
), pp.
11664
11672
.
44.
Hoàng
,
E. M.
, and
Lowe
,
D.
,
2008
, “
Lifetime Prediction of a Blue PE100 Water Pipe
,”
Polym. Degrad. Stab.
,
93
(
8
), pp.
1496
1503
.
45.
Frank
,
A.
,
Pinter
,
G.
, and
Lang
,
R. W.
,
2009
, “
Prediction of the Remaining Lifetime of Polyethylene Pipes After up to 30 Years in Use
,”
Polym. Test.
,
28
(
7
), pp.
737
745
.
You do not currently have access to this content.