Catastrophic failure of the above ground steel storage tanks was observed during past earthquakes, which caused serious economic and environmental consequences. Many of the existing tanks were designed in the past with outdated analysis methods and with underestimated seismic loads. Therefore, the evaluation of the seismic vulnerability of these tanks, especially ones located in seismic prone areas, is extremely important. Seismic fragility functions are useful tools to quantify the seismic vulnerability of structures in the framework of probabilistic seismic risk assessment. These functions give the probability that a seismic demand on a given structural component meets or exceeds its capacity. The objective of this study is to examine the seismic vulnerability of an unanchored steel storage tank, considering the uncertainty of modeling parameters that are related to material and geometric properties of the tank. The significance of uncertain modeling parameters is first investigated with a screening study, which is based on nonlinear static pushover analyses of the tank using the abaqus software. In this respect, a fractional factorial design and an analysis of variance (ANOVA) have been adopted. The results indicate that the considered modeling parameters have significant effects on the uplift behavior of the tank. The fragility curves of two critical failure modes, i.e., the buckling of the shell plate and the plastic rotation of the shell-to-bottom plate joint, are then developed based on a simplified model of the tank, where the uplift behavior is correctly modeled from the static pushover analysis. The uncertainty associated with the significant parameters previously identified are considered in the fragility analysis using a sampling procedure to generate statistically significant samples of the model. The relative importance of different treatment levels of the uncertainty on the fragility curves of the tank is assessed and discussed in detail.

References

1.
Paolacci
,
F.
,
Giannini
,
R.
, and
De Angelis
,
M.
,
2012
, “
Analysis of the Seismic Risk of Major-Hazard Industrial Plants and Applicability of Innovative Seismic Protection Systems
,”
Petrochemicals
,
Vivek
Patel
, ed.,
InTech
, London.
2.
Housner
,
G. W.
,
1963
, “
The Dynamic Behavior of Water Tanks
,”
Bull. Seismol. Soc. Am.
,
53
(
2
), pp.
381
387
.https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/53/2/381/116141
3.
Malhotra
,
P. K.
, and
Veletsos
,
A. S.
,
1994
, “
Beam Model for Base-Uplifting Analysis of Cylindrical Tanks
,”
J. Struct. Eng.
,
120
(
12
), pp.
3471
3488
.
4.
Malhotra
,
P. K.
, and
Veletsos
,
A. S.
,
1994
, “
Uplifting Analysis of Base Plates in Cylindrical Tanks
,”
J. Struct. Eng.
,
120
(
12
), pp.
3489
3505
.
5.
Malhotra
,
P. K.
, and
Veletsos
,
A. S.
,
1994
, “
Uplifting Response of Unanchored Liquid-Storage Tanks
,”
J. Struct. Eng.
,
120
(
12
), pp.
3524
3546
.
6.
Vathi
,
M.
, and
Karamanos
,
S. A.
,
2015
, “
Simplified Model for the Seismic Performance of Unanchored Liquid Storage Tanks
,”
ASME
Paper No. PVP2015-45695.
7.
EN 1998-4
,
2006
,
Eurocode 8: Design of Structures for Earthquake Resistance—Part 4: Silos, Tanks and Pipeline
,
Brussels, Belgium
.
8.
Taniguchi
,
T.
, and
Katayama
,
Y.
,
2016
, “
Masses of Fluid for Cylindrical Tanks in Rock With Partial Uplift of Bottom Plate
,”
ASME J. Pressure Vessel Technol.
,
138
(
5
), p.
0513011
.
9.
Bakalis
,
K.
,
Fragiadakis
,
M.
, and
Vamvatsikos
,
D.
,
2016
, “
Surrogate Modeling for the Seismic Performance Assessment of Liquid Storage Tanks
,”
J. Struct. Eng.
,
143
(
4
), p.
4016199
.
10.
Salzano
,
E.
,
Iervolino
,
I.
, and
Fabbrocino
,
G.
,
2003
, “
Seismic Risk of Atmospheric Storage Tanks in the Framework of Quantitative Risk Analysis
,”
J. Loss Prev. Process Ind.
,
16
(
5
), pp.
403
409
.
11.
Fabbrocino
,
G.
,
Iervolino
,
I.
,
Orlando
,
F.
, and
Salzano
,
E.
,
2005
, “
Quantitative Risk Analysis of Oil Storage Facilities in Seismic Areas
,”
J. Hazard. Mater.
,
123
(
1–3
), pp.
61
69
.
12.
Alessandri
,
S.
,
Caputo
,
A. C.
,
Corritore
,
D.
,
Renato
,
G.
,
Paolacci
,
F.
, and
Phan
,
H. N.
,
2017
, “
On the Use of Proper Fragility Models for Quantitative Seismic Risk Assessment of Process Plants in Seismic Prone Areas
,”
ASME
Paper No. PVP2017-65137.
13.
HAZUS
,
2001
,
Earthquake Loss Estimation Methodology
,
National Institute of Building Science, Risk Management Solution
,
Menlo Park, CA
.
14.
Berahman
,
F.
, and
Behnamfar
,
F.
,
2007
, “
Seismic Fragility Curves for Un-Anchored on-Grade Steel Storage Tanks: Bayesian Approach
,”
J. Earthquake Eng.
,
11
(
2
), pp.
166
192
.
15.
Iervolino
,
I.
,
Fabbrocino
,
G.
, and
Manfredi
,
G.
,
2004
, “
Fragility of Standard Industrial Structures by a Response Surface Based Method
,”
J. Earthquake Eng.
,
8
(
6
), pp.
927
945
.
16.
Buratti
,
N.
, and
Tavano
,
M.
,
2014
, “
Dynamic Buckling and Seismic Fragility of Anchored Steel Tanks by the Added Mass Method
,”
Earthquake Eng. Struct. Dyn.
,
43
(
1
), pp.
1
21
.
17.
Phan
,
H. N.
,
Paolacci
,
F.
, and
Alessandri
,
S.
,
2016
, “
Fragility Analysis Methods for Steel Storage Tanks in Seismic Prone Areas
,”
ASME
Paper No. PVP2016-63102.
18.
Phan
,
H. N.
,
Paolacci
,
F.
,
Bursi
,
O. S.
, and
Tondini
,
N.
,
2017
, “
Seismic Fragility Analysis of Elevated Steel Storage Tanks Supported by Reinforced Concrete Columns
,”
J. Loss Prev. Process Ind.
,
47
, pp.
57
65
.
19.
Phan
,
H. N.
,
Paolacci
,
F.
,
Corritore
,
D.
,
Uckan
,
E.
,
Akbas
,
B.
, and
Shen
,
J. J.
,
2016
, “
Seismic Vulnerability Mitigation of Liquified Gas Tanks Using Concave Sliding Bearings
,”
Bull. Earthquake Eng.
,
14
(
11
), pp.
3283
3299
.
20.
Nielson
,
B. G.
, and
DesRoches
,
R.
,
2007
, “
Analytical Seismic Fragility Curves for Typical Bridges in the Central and Southeastern United States
,”
Earthquake Spectra
,
23
(
3
), pp.
615
633
.
21.
Kwon
,
O. S.
, and
Elnashai
,
A.
,
2006
, “
The Effect of Material and Ground Motion Uncertainty on the Seismic Vulnerability Curves of RC Structure
,”
Eng. Struct.
,
28
(
2
), pp.
289
303
.
22.
Padgett
,
J. E.
, and
DesRoches
,
R.
,
2007
, “
Sensitivity of Seismic Response and Fragility to Parameter Uncertainty
,”
J. Struct. Eng.
,
133
(
12
), pp.
1710
1718
.https://pdfs.semanticscholar.org/45a0/6cc8e86da52040c3314a78f7aae6be3925fd.pdf
23.
Bernier
,
C.
,
Padgett
,
J. E.
,
Proulx
,
J.
, and
Paultre
,
P.
, “
Seismic Fragility of Concrete Gravity Dams With Spatial Variation of Angle of Friction: Case Study
,”
J. Struct. Eng.
,
142
(
5
), p.
05015002
.
24.
SIMULIA
,
2014
,
Abaqus 6.14 Documentation
,
Dassault Systèmes Simulia Corporation
,
Providence, RI
.
25.
API
,
2007
,
Seismic Design of Storage Tanks—Appendix E. Welded Steel Tanks for Oil Storage
, 11th ed.,
American Petroleum Institute
,
Washington, DC
.
26.
Veletsos
,
A. S.
, and
Yang
,
J. Y.
,
1977
, “
Earthquake Response of Liquid Storage Tanks
,”
Second Engineering Mechanics Specialty Conference
,
Raleigh, NC
,
May 23–25
, pp.
1
24
.
27.
Phan
,
H. N.
, and
Paolacci
,
F.
,
2018
, “
Fluid-Structure Interaction Problems: An Application to Anchored and Unanchored Steel Storage Tanks Subjected to Seismic Loadings
,”
16th European Conference on Earthquake Engineering
, Thessaloniki, Greece, June 18–21, Paper No. 11150.
28.
Veletsos
,
A. S.
,
Yang
,
J. Y.
, and
Tang
,
Y.
,
1992
, “
Dynamic Response of Flexibly Supported Liquid-Storage Tanks
,”
J. Struct. Eng.
,
118
(
1
), pp.
264
283
.
29.
McKenna
,
F.
,
Fenves
,
G. L.
, and
Scott
,
M. H.
,
2007
,
OpenSees: Open System for Earthquake Engineering Simulation
,
University of California
,
Berkeley, CA
.
30.
Phan
,
H. N.
,
Paolacci
,
F.
, and
Mongabure
,
P.
,
2017
, “
Nonlinear Finite Element Analysis of Unanchored Steel Liquid Storage Tanks Subjected to Seismic Loadings
,”
ASME
Paper No. PVP2017-65814.
31.
Malhotra
,
P. K.
,
Wenk
,
T.
, and
Wieland
,
M.
,
2000
, “
Simple Procedure for Seismic Analysis of Liquid-Storage Tanks
,”
Struct. Eng. Int.
,
10
(
3
), pp.
197
201
.
32.
Daidola
,
J. C.
, and
Basar
,
N. S.
,
1980
, “
Probability Design for Ship Hull Structural Strength
,”
Spring Meeting/STAR Symposium
,
Coronado, CA
,
June 4–8
, pp.
105
124
.
33.
Mansour
,
A. E.
,
Jan
,
H. Y.
,
Zigelman
,
C. I.
,
Chen
,
Y. N.
, and
Harding
,
S. J.
,
1984
, “
Implementation of Reliability Methods to Marine Structures
,”
Trans. Soc. Nav. Archit. Mar. Eng.
,
92
(
11–20
), pp.
5
124
.
34.
Cornell
,
C.
,
Jalayer
,
F.
,
Hamburger
,
R.
, and
Foutch
,
D.
,
2002
, “
Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines
,”
J. Struct. Eng.
,
128
(
4
), pp.
526
533
.
35.
Phan
,
H. N.
, and
Paolacci
,
F.
,
2016
, “
Efficient Intensity Measures for Probabilistic Seismic Response Analysis of Anchored Above-Ground Liquid Steel Storage Tanks
,”
ASME
Paper No. PVP2016-63103.
36.
Norme Tecniche
,
2008
, “Norme Techniche per le costruzioni,” DM Infrastrutture (in Italian).
37.
Giannini
,
R.
,
2000
,
Mathazard: A Program for Seismic Hazard Analysis
,
University of Roma Tre
,
Rome, Italy
(in Italian).
38.
INGV
,
2004
, “Gruppo di Lavoro per la redazione della mappa di pericolosità sismica (Ordinanza PCM 20.03.03 n.3274),” Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy, Final report.
39.
McKay
,
M. D.
,
Conover
,
W. J.
, and
Beckman
,
R. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.http://www.jstor.org/stable/1271432
40.
Cambra
,
F. J.
,
1982
,
Earthquake Response Considerations of Broad Liquid Storage Tanks,” Earthquake Engineering Research Center, Berkeley, CA, Report No. UCBIEERC-82125.
41.
Rotter
,
J. M.
,
1985
, “Local Inelastic Collapse of Pressurised Thin Cylindrical Steel Shells Under Axial Compression,” University of Sydney, Sydney, Australia, Research Report.
42.
Priestley
,
M. J. N.
,
Wood
,
J. H.
, and
Davidson
,
B. J.
,
1986
, “
Seismic Design of Storage Tanks
,”
Bull. N. Z. Natl. Soc. Earthquake Eng.
,
19
(
4
), pp.
272
284
.http://www.nzsee.org.nz/db/Bulletin/Archive/19(4)0272.pdf
43.
FEMA,
2012
,
Seismic Performance Assessment of Buildings: Volume 1—Methodology
,
Applied Technology Council
,
Redwood City, CA
.
You do not currently have access to this content.