Abstract

This paper aims to provide experimental results into the buckling behavior of cones having single dimple imperfection subjected to axial compression. Results of eight laboratory scaled conical test models and their accompanying numerical data are presented. Cones were manufactured in pairs with single dimple imperfection amplitude, A, of 0.0, 0.56, 1.12, and 1.68. Experimental results reveal good repeatability of collapse load. The errors between each pair were found to be 3%, 7%, 11%, and 1%. Furthermore, the comparison between test data and the numerically predicted collapse load was seen to be good. The ratio of collapse test load to finite element predicted values are [(0.96, 0.99), (1.04, 1.10), (1.06, 0.94), (1.0, 1.01)]. The buckling of axially compressed conical shells using the single dimple imperfection type appears to be strongly influenced by: (i) the dimple/imperfection amplitude, (ii) the cone geometric parameter, i.e., radius-to-thickness ratio and cone angle, and (iii) the location of the dimple.

References

References
1.
Deshpande
,
S.
,
2010
, “
Buckling and Post Buckling of Structural Components
,” MS thesis,
The University of Texas at Arlington
,
Arlington, TX
.https://rc.library.uta.edu/uta-ir/handle/10106/5385
2.
Eltaher
,
M. A.
, and
Mohamed
,
S. A.
,
2019
, “
Buckling and Stability Analysis of Sandwich Beams Subjected to Varying Axial Loads
,”
Steel Compos. Struct.
,
34
(
2
), pp.
241
260
.10.12989/scs.2020.34.2.241
3.
Hao
,
P.
,
Wang
,
B.
,
Du
,
K.
,
Li
,
G.
,
Tian
,
K.
,
Sun
,
Y.
, and
Ma
,
Y.
,
2016
, “
Imperfection-Insensitive Design of Stiffened Conical Shells Based on Equivalent Multiple Perturbation Load Approach
,”
Compos. Struct.
,
136
, pp.
405
413
.10.1016/j.compstruct.2015.10.022
4.
Khakimova
,
R.
,
Wilckens
,
D.
,
Reichardt
,
J.
,
Zimmermann
,
R.
, and
Degenhardt
,
R.
,
2016
, “
Buckling of Axially Compressed CFRP Truncated Cones: Experimental and Numerical Investigation
,”
Compos. Struct.
,
146
, pp.
232
247
.10.1016/j.compstruct.2016.02.023
5.
Wagner
,
H. N. R.
,
Hühne
,
C.
, and
Khakimova
,
R.
,
2018
, “
Towards Robust Knockdown Factors for the Design of Conical Shells Under Axial Compression
,”
Int. J. Mech. Sci.
,
146–147
, pp.
60
80
.10.1016/j.ijmecsci.2018.07.016
6.
Chahardoli
,
S.
, and
Alavi Nia
,
A.
,
2017
, “
Experimental and Numerical Investigations on Collapse Properties of Capped-End Frusta Tubes With Circular Triggers Under Axial Quasi-Static Loading
,”
Int. J. Mech. Sci.
,
134
, pp.
545
561
.10.1016/j.ijmecsci.2017.10.037
7.
Jafarian
,
N.
, and
Rezvani
,
M. J.
,
2019
, “
Crushing Behavior of Multi-Component Conical Tubes as Energy Absorber: A Comparative Analysis Between End-Capped and Non-Capped Conical Tubes
,”
Eng. Struct.
,
178
, pp.
128
135
.10.1016/j.engstruct.2018.09.092
8.
Błachut
,
J.
,
2016
, “
Buckling of Externally Pressurized Steel Toriconical Shells
,”
Int. J. Pressure Vessels Piping
,
144
, pp.
25
34
.10.1016/j.ijpvp.2016.05.002
9.
Ifayefunmi
,
O.
,
2017
, “
Plastic Buckling of Conical Shell With Non-Continuous Edge Support
,”
Int. J. Mech. Mechatronics Eng.
,
17
(
1
), pp.
143
152
.http://ijens.org/index.htm
10.
Maali
,
M.
,
Showkati
,
H.
, and
Mahdi Fatemi
,
S.
,
2012
, “
Investigation of the Buckling Behavior of Conical Shells Under Weld-Induced Imperfections
,”
Thin-Walled Struct.
,
57
, pp.
13
24
.10.1016/j.tws.2012.04.003
11.
Goldfeld
,
Y.
,
2007
, “
Imperfection Sensitivity of Laminated Conical Shells
,”
Int. J. Solids Struct.
,
44
(
3–4
), pp.
1221
1241
.10.1016/j.ijsolstr.2006.06.016
12.
Jabareen
,
M.
, and
Sheinman
,
I.
,
2006
, “
Postbuckling Analysis of Geometrically Imperfect Conical Shells
,”
J. Eng. Mech.
,
132
(
12
), pp.
1326
1334
.10.1061/(ASCE)0733-9399(2006)132:12(1326)
13.
Ifayefunmi
,
O.
,
2014
, “
A Survey of Buckling of Conical Shells Subjected to Axial Compression and External Pressure
,”
J. Eng. Sci. Technol. Rev.
,
7
(
2
), pp.
182
189
.10.25103/jestr.072.27
14.
Ifayefunmi
,
O.
, and
Błachut
,
J.
,
2018
, “
Imperfection Sensitivity: A Review of Buckling Behavior of Cones, Cylinders, and Domes
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
050801
.10.1115/1.4039695
15.
Ifayefunmi
,
O.
, and
Błachut
,
J.
,
2011
, “
The Effect of Shape, Thickness and Boundary Imperfections on Plastic Buckling of Cones
,”
ASME Paper No. OMAE2011-49055
.10.1115/OMAE2011-49055
16.
Błachut
,
J.
,
2012
, “
Buckling of Truncated Cones With Localized Imperfections
,”
ASME Paper No. PVP2012-78374
.10.1115/PVP2012-78374
17.
Błachut
,
J.
,
2013
, “
Combined Stability of Geometrically Imperfect Conical Shells
,”
Thin-Walled Struct.
,
67
, pp.
121
128
.10.1016/j.tws.2013.02.007
18.
Ifayefunmi
,
O.
, and
Błachut
,
J.
,
2013
, “
Instabilities in Imperfect Thick Cones Subjected to Axial Compression and External Pressure
,”
Mar. Struct.
,
33
, pp.
297
307
.10.1016/j.marstruc.2013.06.004
19.
Hühne
,
C.
,
Rolfes
,
R.
,
Breitbach
,
E.
, and
Teßmer
,
J.
,
2008
, “
Robust Design of Composite Cylindrical Shells Under Axial Compression—Simulation and Validation
,”
Thin-Walled Struct.
,
46
(
7–9
), pp.
947
962
.10.1016/j.tws.2008.01.043
20.
Khakimova
,
R.
,
Warren
,
C. J.
,
Zimmermann
,
R.
,
Castro
,
S. G. P.
,
Arbelo
,
M. A.
, and
Degenhardt
,
R.
,
2014
, “
The Single Perturbation Load Approach Applied to Imperfection Sensitive Conical Composite Structures
,”
Thin-Walled Struct.
,
84
, pp.
369
377
.10.1016/j.tws.2014.07.005
21.
Ismail
,
M. S.
,
Ifayefunmi
,
O.
, and
Fadzullah
,
S. H. S. M.
,
2019
, “
Buckling of Imperfect Cylinder-Cone-Cylinder Transition Under Axial Compression
,”
Thin-Walled Struct.
,
144
, p.
106250
.10.1016/j.tws.2019.106250
22.
Orifici
,
A. C.
, and
Bisagni
,
C.
,
2013
, “
Perturbation-Based Imperfection Analysis for Composite Cylindrical Shells Buckling in Compression
,”
Compos. Struct.
,
106
, pp.
520
528
.10.1016/j.compstruct.2013.06.028
23.
Castro
,
S. G. P.
,
Zimmermann
,
R.
,
Arbelo
,
M. A.
, and
Degenhardt
,
R.
,
2013
, “
Exploring the Constancy of the Global Buckling Load After a Critical Geometric Imperfection Level in Thin-Walled Cylindrical Shells for Less Conservative Knock-Down Factors
,”
Thin-Walled Struct.
,
72
, pp.
76
87
.10.1016/j.tws.2013.06.016
24.
Arbelo
,
M.
,
Zimmermann
,
R.
,
Castro
,
S. G. P.
, and
Degenhardt
,
R.
,
2013
, “
Comparison of New Design Guidelines for Composite Cylindrical Shells Prone to Buckling
,”
Ninth International Conference on Computer Science and Technology
,
Sorrento, Italy
, Apr. 24–26, Corpus ID: 4235904.https://www.researchgate.net/publication/259898297_Comparison_of_new_Design_Guidelines_for_Composite_Cylindrical_Shells_prone_to_Buckling
25.
Wagner
,
H. N. R.
,
Hühne
,
C.
,
Niemann
,
S.
, and
Khakimova
,
R.
,
2017
, “
Robust Design Criterion for Axially Loaded Cylindrical Shells - Simulation and Validation
,”
Thin-Walled Struct.
,
115
, pp.
154
162
.10.1016/j.tws.2016.12.017
26.
Khakimova
,
R.
,
Castro
,
S. G. P.
,
Wilckens
,
D.
,
Rohwer
,
K.
, and
Degenhardt
,
R.
,
2017
, “
Buckling of Axially Compressed CFRP Cylinders With and Without Additional Lateral Load: Experimental and Numerical Investigation
,”
Thin-Walled Struct.
,
119
, pp.
178
189
.
27.
Castro
,
S. G. P.
,
Mittelstedt
,
C.
,
Monteiro
,
F. A. C.
,
Degenhardt
,
R.
, and
Ziegmann
,
G.
,
2015
, “
Evaluation of Non-Linear Buckling Loads of Geometrically Imperfect Composite Cylinders and Cones With the Ritz Method
,”
Compos. Struct.
,
122
, pp.
284
299
.10.1016/j.compstruct.2014.11.050
28.
Özyurt
,
E.
,
Yılmaz
,
H.
, and
Tomek
,
P.
,
2017
, “
Prediction of the Influence of Geometrical Imperfection to Load Carrying Capacity of Conical Shells Under Axial Loading
,”
Sigma J. Eng. Nat. Sci.
,
52
(
1
), pp.
1
20
.http://eds.yildiz.edu.tr/sigma/
29.
Hibbit, Karlsson and Sorensen, Inc.
,
2006
, “
ABAQUS—Theory and Standard User's Manual Version 6.3
,”
Hibbit, Karlsson and Sorensen
,
Pawtucket, RI
.
30.
Ifayefunmi
,
O.
,
Mahidan
,
F. M.
, and
Maslan
,
M. H.
,
2020
, “
Instability of Conical Shells With Multiple Dimples Under Axial Compression
,”
Int. J. Recent Technol. Eng.
,
8
(
5
), pp.
1022
1027
.10.35940/ijrte.E6102.018520
31.
BSI
,
2001
, “
Tensile Testing Off Metallic Materials, Part (1), Method of Test at Ambient Temperature
,”
British Standard Institute
,
London
, Standard No. BS EN 10002–1.
32.
Błachut
,
J.
, and
Ifayefunmi
,
O.
,
2012
, “
Buckling of Unstiffened Steel Cones Subjected to Axial Compression and External Pressure
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(
3
), p.
031603
.10.1115/1.4004953
33.
Blachut
,
J.
,
Ifayefunmi
,
O.
, and
Corfa
,
M.
,
2011
, “
Collapse and Buckling of Conical Shells
,”
Proceedings of the 21st International Offshore and Polar Engineering Conference
, Maui, HI, June 19–24, pp.
887
893
.https://www.onepetro.org/conference-paper/ISOPE-I-11-285
34.
Seide
,
P.
,
1961
, “
Axisymmetric Buckling of Circular Cones Under Axial Compression
,”
ASME J. Appl. Mech.
,
28
(
2
), pp.
315
628
.10.1115/1.3641692
35.
Seide
,
P.
, and
Weingarten
,
V. I.
,
1968
, “
Buckling of Thin-Walled Truncated Cone
,”
NASA Langley Research Center
,
Washington, DC
, Report No. NASA SP-8019.
36.
Chryssanthopoulos
,
M. K.
, and
Poggi
,
C.
,
2001
, “
Collapse Strength of Unstiffened Conical Shells Under Axial Compression
,”
J. Constr. Steel Res.
,
57
(
2
), pp.
165
184
.10.1016/S0143-974X(00)00013-4
You do not currently have access to this content.