Abstract

The buckling stress of axially compressed circular cylindrical shells (CCSs) is highly sensitive to imperfections. Perfect CCSs are an idealization unattainable in reality. In practice, imperfections are always present and significantly reduce the load-carrying capacity. Accordingly, shell designers are encouraged by the Eurocode EN 1993:1-6 to conduct geometric and material nonlinear with imperfections analysis (GMNIA) considering different possible forms of imperfections for the shell under design. As GMNIA type of analysis is difficult and requires highly skilled engineers, knowledge of the upper limit of the buckling stress serves as a guide and prevents overestimation of the shell buckling resistance. It also encourages average skilled designers to attempt GMNIA as far as the maximum possible limit is known. Thus, the objective of this study is to provide the upper bound of the buckling stress of carbon steel CCSs. Geometric and material nonlinear analysis (GMNA) of perfect CCSs for a wide range of R/t ratio is conducted. It has been found that for cases of small and intermediate R/t values the buckling stress can be predicted by GMNA while the elastic buckling controls those of larger R/t values. The limiting R/t values depend on the steel grade and have been derived for the available standard grades of carbon steel. The obtained results are presented in terms of simplified formulas and a design chart to be used by engineers. Application of the proposed upper bound in simplified design approaches using knock down factor (KDFs) has also been discussed.

References

1.
Ignatowicz
,
R.
, and
Hotala
,
E.
,
2020
, “
Failure of Cylindrical Steel Storage Tank Due to Foundation Settlements
,”
Eng. Failure Anal.
,
115
, p.
104628
.10.1016/j.engfailanal.2020.104628
2.
Miladi
,
S.
, and
Razzaghi
,
M. S.
,
2019
, “
Failure Analysis of an Un-Anchored Steel Oil Tank Damaged During the Silakhor Earthquake of 2006 in Iran
,”
Eng. Failure Anal.
,
96
, pp.
31
43
.10.1016/j.engfailanal.2018.09.031
3.
Trebuňa
,
F.
,
Šimčák
,
F.
, and
Bocko
,
J.
,
2009
, “
Failure Analysis of Storage Tank
,”
Eng. Failure Anal.
,
16
(
1
), pp.
26
38
.10.1016/j.engfailanal.2007.12.005
4.
Godoy, L. A.,
2016
, “
Buckling of Vertical Oil Storage Steel Tanks: Review of Static Buckling Studies
,”
Thin-Walled Struct.
,
103
, pp.
1
21
.10.1016/j.tws.2016.01.026
5.
Wang
,
C. M.
, and
Wang
,
C. Y.
,
2004
,
Exact Solutions for Buckling of Structural Members
,
CRC Press
, Boca Raton, FL.
6.
Wilson
,
W. M.
, and
Newmark
,
N. M.
,
1933
,
The Strength of Thin Cylindrical Shells as Columns
,
Engineering Experimental Station, University of Illinois
, Bulletin No. 255.
7.
Lundquist
,
E. E.
,
1934
, “
Strength Tests of Thin-Walled Duralumin Cylinders in Compression
,” NACA Report No. 473, pp.
585
602
.
8.
Koiter
,
W. T.
,
1945
, “
On the Stability of Elastic Equilibrium
,” Ph.D. thesis,
Delft University
, Delft, The Netherlands (in Dutch; see also Translation AFFDL-TR-70-25 Wright Patterson Air Force Base, 1970).
9.
Hübner, A., Teng, J. G., and Saal, H., 2006, “Buckling Behaviour of Large Steel Cylinders With Patterned Welds,”
Int. J. Pressure Vessels Piping
, 83(1), pp. 13–26.10.1016/j.ijpvp.2005.10.003
10.
Rotter
,
J. M.
, and
Teng
,
J.
,
1989
, “
Elastic Stability of Cylindrical Shells With Weld Depressions
,”
J. Struct. Eng.
,
115
(
5
), pp.
1244
1263
.10.1061/(ASCE)0733-9445(1989)115:5(1244)
11.
Berry
,
P. A.
,
Rotter
,
J. M.
, and
Bridge
,
R. Q.
,
2000
, “
Compression Tests on Cylinders With Circumferential Weld Depressions
,”
J. Eng. Mech.
,
126
(
4
), pp.
405
413
.10.1061/(ASCE)0733-9399(2000)126:4(405)
12.
Gu, W., Fan, H., and Hou, Y., 2024, “Simulating the Effects of Geometric Imperfections on the Buckling of Axially Compressed Cylindrical Shells Through Reducing Localized Stiffness,”
Thin-Walled Struct.
, 205, p. 112410.10.1016/j.tws.2024.112410
13.
Gavrilenko
,
G. D.
,
2002
, “
Stability of Cylindrical Shells With Local Imperfection
,”
Int. Appl. Mech.
,
38
(
12
), pp.
1496
1500
.10.1023/A:1023218009879
14.
Gavrilenko
,
G. D.
,
2003
, “
Numerical and Analytical Approaches to the Stability Analysis of Imperfect Shells
,”
Int. Appl. Mech.
,
39
(
9
), pp.
1029
1045
.10.1023/B:INAM.0000008211.27840.04
15.
Gavrilenko
,
G. D.
, and
Krasovskii
,
V. L.
,
2004
, “
Stability of Circular Cylindrical Shells With a Single Local Dent
,”
Strength Mater.
,
36
(
3
), pp.
260
268
.10.1023/B:STOM.0000035759.85256.6e
16.
Gavrilenko
,
G. D.
, and
Krasovskii
,
V. L.
,
2004
, “
Calculation of Load-Carrying Capacity of Elastic Shells With Periodic Dents (Theory and Experiment)
,”
Strength Mater.
,
36
(
5
), pp.
511
517
.10.1023/B:STOM.0000048400.64031.98
17.
Gavrilenko
,
G. D.
,
2004
, “
Stability and Load-Bearing Capacity of Smooth and Ribbed Shells With Local Dents
,”
Int. Appl. Mech.
,
40
(
9
), pp.
970
993
.10.1007/s10778-005-0002-y
18.
Prabu
,
B.
,
Bujjibabu
,
N.
,
Saravanan
,
S.
, and
Venkatraman
,
A.
,
2007
, “
Effect of a Dent of Different Sizes and Angles of Inclination on Buckling Strength of a Short Stainless Steel Cylindrical Shell Subjected to Uniform Axial Compression
,”
Adv. Struct. Eng.
,
10
(
5
), pp.
581
591
.10.1260/136943307782417735
19.
Prabu
,
B.
,
Raviprakash
,
A. V.
, and
Venkatraman
,
A.
,
2010
, “
Parametric Study on Buckling Behaviour of Dented Short Carbon Steel Cylindrical Shell Subjected to Uniform Axial Compression
,”
Thin-Walled Struct.
,
48
(
8
), pp.
639
69
.10.1016/j.tws.2010.02.009
20.
Prabu
,
B.
,
Raviprakash
,
A.
, and
Rathinam
,
N.
,
2010
, “
Parametric Study on Buckling Behaviour of Thin Stainless Steel Cylindrical Shells for Circular Dent Dimensional Variations Under Uniform Axial Compression
,”
Int. J. Eng., Sci. Technol.
,
2
(
4
), pp.
134
149
.10.4314/ijest.v2i4.59282
21.
Prabu
,
B.
,
Raviprakash
,
A. V.
, and
Venkatraman
,
A.
,
2012
, “
Neighbourhood Effect of Two Short Dents on Buckling Behaviour of Short Thin Stainless Steel Cylindrical Shells
,”
Int. J. Comput. Aided Eng. Technol.
,
4
(
2
), p.
143
.10.1504/IJCAET.2012.045654
22.
Wang
,
B.
,
Hao
,
P.
,
Li
,
G.
,
Fang
,
Y.
,
Wang
,
X.
, and
Zhang
,
X.
,
2013
, “
Determination of Realistic Worst Imperfection for Cylindrical Shells Using Surrogate Model
,”
Struct. Multidiscip. Optim.
,
48
(
4
), pp.
777
794
.10.1007/s00158-013-0922-9
23.
Musa
,
A. E. S.
,
Al-Shugaa
,
M. A.
, and
Al-Gahtani
,
H. J.
,
2023
, “
The Buckling Strength of Axially Compressed Thin Circular Cylindrical Shells Subjected to Dent Imperfection
,”
Arab. J. Sci. Eng.
,
48
(
4
), pp.
5481
5492
.10.1007/s13369-022-07455-4
24.
Ghanbari Ghazijahani
,
T.
,
Jiao
,
H.
, and
Holloway
,
D.
,
2014
, “
Experimental Study on Damaged Cylindrical Shells Under Compression
,”
Thin-Walled Struct.
,
80
, pp.
13
21
.10.1016/j.tws.2014.02.029
25.
Ismail
,
M. S.
,
Purbolaksono
,
J.
,
Andriyana
,
A.
,
Tan
,
C. J.
,
Muhammad
,
N.
, and
Liew
,
H. L.
,
2015
, “
The Use of Initial Imperfection Approach in Design Process and Buckling Failure Evaluation of Axially Compressed Composite Cylindrical Shells
,”
Eng. Fail Anal.
,
51
, pp.
20
28
.10.1016/j.engfailanal.2015.02.017
26.
Castro
,
S. G. P.
,
Zimmermann
,
R.
,
Arbelo
,
M. A.
,
Khakimova
,
R.
,
Hilburger
,
M. W.
, and
Degenhardt
,
R.
,
2014
, “
Geometric Imperfections and Lower-Bound Methods Used to Calculate Knock-Down Factors for Axially Compressed Composite Cylindrical Shells
,”
Thin-Walled Struct.
,
74
, pp.
118
132
.10.1016/j.tws.2013.08.011
27.
Iwicki
,
P.
,
Wójcik
,
M.
, and
Tejchman
,
J.
,
2011
, “
Failure of Cylindrical Steel Silos Composed of Corrugated Sheets and Columns and Repair Methods Using a Sensitivity Analysis
,”
Eng. Fail Anal.
,
18
(
8
), pp.
2064
2083
.10.1016/j.engfailanal.2011.06.013
28.
Kobayashi
,
T.
, and
Mihara
,
Y.
,
2010
, “
Application of Abaqus for Practical Postbuckling Analyses of Cylindrical Shells Under Axial Compression
,”
SIMULIA Customer Conference
, Tokyo, Japan, May 25–27, pp.
1
15
.https://www.3ds.com/fileadmin/PRODUCTS/SIMULIA/PDF/scc-papers/Application-Abaqus-Practical-Postbuckling-2010.pdf
29.
Kobayashi
,
T.
,
Mihara
,
Y.
, and
Fujii
,
F.
,
2012
, “
Path-Tracing Analysis for Post-Buckling Process of Elastic Cylindrical Shells Under Axial Compression
,”
Thin-Walled Struct.
,
61
, pp.
180
187
.10.1016/j.tws.2012.05.018
30.
Musa
,
A. E. S.
,
Al-Shugaa
,
M. A.
, and
Al-Gahtani
,
H. J.
,
2021
, “
An Equivalent Imperfection-Based Fe Simulation of the Stability of Dented Cylindrical Shells Accounting for Unintended Imperfections
,”
Thin-Walled Struct.
,
158
, p.
107159
.10.1016/j.tws.2020.107159
31.
Ifayefunmi
,
O.
,
2016
, “
Buckling Behavior of Axially Compressed Cylindrical Shells: Comparison of Theoretical and Experimental Data
,”
Thin-Walled Struct.
,
98
, pp.
558
564
.10.1016/j.tws.2015.10.027
32.
Dehwah
,
O. H. A.
, and
Al-Gahtani
,
H. J.
,
2023
, “
Energy-Based Solution for the Plastic Buckling of Stainless Steel Circular Cylindrical Shells
,”
Structures
,
48
, pp.
2024
2036
.10.1016/j.istruc.2023.01.083
33.
Weingarten
,
V. I.
,
Seide
,
P.
, and
Peterson
,
J. P.
,
1968
, “
Buckling of Thin-Walled Circular Cylinders
,” Report No. NASA-SP-8007.
34.
Hilburger
,
M.
,
2012
, “
Developing the Next Generation Shell Buckling Design Factors and Technologies
,”
AIAA
Paper No. 2012-1686.10.2514/6.2012-1686
35.
Hilburger
,
M. W.
,
2018
, “
On the Development of Shell Buckling Knockdown Factors for Stiffened Metallic Launch Vehicle Cylinders
,”
AIAA
Paper No. 2018-1990.10.2514/6.2018-1990
36.
Hühne
,
C.
,
Rolfes
,
R.
, and
Tessmer
,
J.
,
2005
, “
A New Approach for Robust Design of Composite Cylindrical Shells Under Axial Compression
,”
European Space Agency (Spec. Publ.)
, (
581
), pp.
725
732
.http://adsabs.harvard.edu/abs/2005ESASP.581E.141H
37.
Hühne
,
C.
,
Rolfes
,
R.
,
Breitbach
,
E.
, and
Teßmer
,
J.
,
2008
, “
Robust Design of Composite Cylindrical Shells Under Axial Compression - Simulation and Validation
,”
Thin-Walled Struct.
,
46
(
7–9
), pp.
947
962
.10.1016/j.tws.2008.01.043
38.
Degenhardt
,
R.
,
Castro
,
S. G. P.
,
Arbelo
,
M. A.
,
Zimmerman
,
R.
,
Khakimova
,
R.
, and
Kling
,
A.
,
2014
, “
Future Structural Stability Design for Composite Space and Airframe Structures
,”
Thin-Walled Struct.
,
81
, pp.
29
38
.10.1016/j.tws.2014.02.020
39.
Castro
,
S. G. P.
,
Zimmermann
,
R.
,
Arbelo
,
M. A.
, and
Degenhardt
,
R.
,
2013
, “
Exploring the Constancy of the Global Buckling Load After a Critical Geometric Imperfection Level in Thin-Walled Cylindrical Shells for Less Conservative Knock-Down Factors
,”
Thin-Walled Struct.
,
72
, pp.
76
87
.10.1016/j.tws.2013.06.016
40.
Jiao
,
P.
,
Chen
,
Z.
,
Tang
,
X.
,
Su
,
W.
, and
Wu
,
J.
,
2018
, “
Design of Axially Loaded Isotropic Cylindrical Shells Using Multiple Perturbation Load Approach – Simulation and Validation
,”
Thin-Walled Struct.
,
133
, pp.
1
16
.10.1016/j.tws.2018.09.028
41.
Wang
,
B.
,
Du
,
K.
,
Hao
,
P.
,
Tian
,
K.
,
Chao
,
Y. J.
,
Jiang
,
L.
,
Xu
,
S.
, and
Zhang
,
X.
,
2019
, “
Experimental Validation of Cylindrical Shells Under Axial Compression for Improved Knockdown Factors
,”
Int. J. Solids Struct.
,
164
, pp.
37
51
.10.1016/j.ijsolstr.2019.01.001
42.
Tian
,
K.
,
Wang
,
B.
,
Hao
,
P.
, and
Waas
,
A. M.
,
2018
, “
A High-Fidelity Approximate Model for Determining Lower-Bound Buckling Loads for Stiffened Shells
,”
Int. J. Solids Struct.
,
148–149
, pp.
14
23
.10.1016/j.ijsolstr.2017.10.034
43.
Wagner
,
H. N. R.
,
Hühne
,
C.
, and
Khakimova
,
R.
,
2019
, “
On the Development of Shell Buckling Knockdown Factors for Imperfection Sensitive Conical Shells Under Pure Bending
,”
Thin-Walled Struct.
,
145
, p.
106373
.10.1016/j.tws.2019.106373
44.
Eurocode 3,
2007
, “
Design of Steel Structures, Part 1–6: Strength and Stability of Shell Structures
,”
European Committee for Standardization (CEN)
,
Brussels, Belgium
.
45.
Rotter
,
J. M.
, and
Schmidt
,
H.
,
2008
, “
Buckling of Steel Shells: European Design Recommendations; [Eurocode 3, Part 1-6]
,” 5th ed., European Convention for Constructional Steelwork (ECCS), Brussels, Belgium.
46.
Lykhachova
,
O.
, and
Evkin
,
A.
,
2020
, “
Effect of Plasticity in the Concept of Local Buckling of Axially Compressed Cylindrical Shells
,”
Thin-Walled Struct.
,
155
, p.
106965
.10.1016/j.tws.2020.106965
47.
Musa
,
A. E. S.
,
Dehwah
,
O. H. A.
,
Al-Shugaa
,
M. A.
, and
Al-Gahtani
,
H. J.
,
2023
, “
Non-Axisymmetric Buckling Stress of Axially Compressed Circular Cylindrical Shells: Closed-Form and Simplified Formulae
,”
ASME J. Pressure Vessel Technol.
,
145
(
2
), p.
021302
.10.1115/1.4056152
48.
Ugural
,
A. C.
,
2009
,
Stresses in Beams, Plates, and Shells
,
CRC Press
,
Boca Raton, FL
.
49.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
,
2nd ed., McGraw-Hill
, New York.
50.
Simulia
,
D. S.
,
2015
, “
ABAQUS 6.16 Analysis User's Guide
,”
Online Documentation
, Dassault Systèmes, Vélizy-Villacoublay, France.
51.
Yun
,
X.
, and
Gardner
,
L.
,
2017
, “
Stress-Strain Curves for Hot-Rolled Steels
,”
J. Constr. Steel Res.
,
133
, pp.
36
46
.10.1016/j.jcsr.2017.01.024
52.
Eurocode 3,
2005
, “
Design of steel structures-Part 1-1: General rules and rules for buildings (EN 1993-1-1)
,”
European Committee for Standardization (CEN)
,
Brussels, Belgium
.
53.
Yun
,
X.
,
Nseir
,
J.
,
Gardner
,
L.
, and
Boissonnade
,
N.
,
2016
, “
Experimental and Numerical Investigation Into the Local Imperfection Sensitivity of Hot-Rolled Steel I-Sections
,”
Proceedings of the 7th International Conference on Coupled Instabilities in Metal Structures
, Baltimore, MD.
54.
Liew
,
A.
,
2014
, “
Design of Structural Steel Elements With the Continuous Strength Method
,” Ph.D. thesis, Imperial College London, UK.
55.
Wang
,
J.
,
Afshan
,
S.
,
Gkantou
,
M.
,
Theofanous
,
M.
,
Baniotopoulos
,
C.
, and
Gardner
,
L.
,
2016
, “
Flexural Behaviour of Hot-Finished High Strength Steel Square and Rectangular Hollow Sections
,”
J. Constr. Steel Res.
,
121
, pp.
97
109
.10.1016/j.jcsr.2016.01.017
56.
Dehwah
,
O.
,
2018
, “
Energy-Based Solution for the Buckling of CFRP Stiffened Stainless Steel Cylindrical Shells
,”
King Fahd University of Petroleum and Minerals, Saudi Arabia
.
57.
ABAQUS
,
I.
,
2006
, “
Abaqus User's Manual, Version 6.6: ABAQUS
,”
ABAQUS/CAE User's Manual
(v6.6), accessed Sept. 18, 2024, https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usi/default.htm?startat=pt03ch14s11s02.html
58.
Riks
,
E.
,
1979
, “
An Incremental Approach to the Solution of Snapping and Buckling Problems
,”
Int. J. Solids Struct.
,
15
(
7
), pp.
529
551
.10.1016/0020-7683(79)90081-7
59.
Wolfram Research Inc.
,
2022
, “
Mathematica, Version 13.2
,”
Wolfram Research Inc
.,
Champaign, IL
.
60.
Musa
,
A. E. S.
,
2020
, “
Nonlinear Buckling of Cylindrical Shells Under Axial Compression
,” Ph.D. dissertation,
King Fahd University of Petroleum and Minerals, Saudi Arabia
.
61.
Kim
,
S.-E.
, and
Kim
,
C.-S.
,
2002
, “
Buckling Strength of the Cylindrical Shell and Tank Subjected to Axially Compressive Loads
,”
Thin-Walled Struct.
,
40
(
4
), pp.
329
353
.10.1016/S0263-8231(01)00066-0
62.
Song
,
C. Y.
,
Teng
,
J. G.
, and
Rotter
,
J. M.
,
2004
, “
Imperfection Sensitivity of Thin Elastic Cylindrical Shells Subject to Partial Axial Compression
,”
Int. J. Solids Struct.
,
41
(
24–25
), pp.
7155
7180
.10.1016/j.ijsolstr.2004.05.040
63.
Chen
,
Z.
,
Fan
,
H.
,
Cheng
,
J.
,
Jiao
,
P.
,
Xu
,
F.
, and
Zheng
,
C.
,
2018
, “
Buckling of Cylindrical Shells With Measured Settlement Under Axial Compression
,”
Thin-Walled Struct.
,
123
, pp.
351
359
.10.1016/j.tws.2017.11.006
64.
Wagner
,
H. N. R.
,
Hühne
,
C.
, and
Niemann
,
S.
,
2017
, “
Robust Knockdown Factors for the Design of Axially Loaded Cylindrical and Conical Composite Shells – Development and Validation
,”
Compos. Struct.
,
173
, pp.
281
303
.10.1016/j.compstruct.2017.02.031
65.
Wang
,
B.
,
Hao
,
P.
,
Ma
,
X.
, and
Tian
,
K.
,
2022
, “
Knockdown Factor of Buckling Load for Axially Compressed Cylindrical Shells: State of the Art and New Perspectives
,”
Acta Mech. Sin.
,
38
(
1
), p.
421440
.10.1007/s10409-021-09035-x
You do not currently have access to this content.