Abstract

Steel ribbon wound vessels are a preferred type of hydrogen storage infrastructure in refueling stations. However, they may fail under the impact of fragments generated by nearby accidental explosions. This paper reports on dynamic deformation and damage of steel ribbon wound vessels impacted by blast fragment. Thermoviscoplastic constitutive relations were developed by conducting mechanical property tests on vessel materials (S31603 and HP345) across a range of strain rates from quasi-static to 2800 s−1. Based on this, a numerical model incorporating thermoviscoplastic constitutive models was established for simulating the dynamic responses of steel ribbon wound vessels impacted by fragment. The model was validated by comparing the simulated results of crater diameters on vessel with the experimental results of high-speed fragment impact tests. The dynamic deformation and damage of vessels were analyzed from the aspects of impact process, structural strain, and energy evolution, etc. Results showed that: (1) under the same kinetic energy, the response of the vessel under heavier fragment impact could be divided into four stages: vessel depression, steel ribbons vibration, fragment separation from the vessel, and vessel rebound. With the decrease of the fragment mass, fragment was embedded in the steel ribbons, and the vibration of steel ribbons was gradually weakened; (2) heavier and low-velocity fragments caused depression and nearby steel ribbons warping deformation at the impact site, while lighter and high-velocity fragments caused penetration of steel ribbons at the impact site.

References

1.
Sun
,
Z. Y.
,
Liu
,
F. S.
,
Liu
,
X. H.
,
Sun
,
B. G.
, and
Sun
,
D. W.
,
2012
, “
Research and Development of Hydrogen Fuelled Engines in China
,”
Int. J. Hydrogen Energy
,
37
(
1
), pp.
664
681
.10.1016/j.ijhydene.2011.09.114
2.
Manoharan
,
Y.
,
Hosseini
,
S. E.
,
Butler
,
B.
,
Alzhahrani
,
H.
, Senior, B. T. F.,
Ashuri
,
T.
, and
Krohn
,
J.
,
2019
, “
Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect
,”
Appl. Sci.-Basel
,
9
(
11
), p.
2296
.10.3390/app9112296
3.
Bethoux
,
O.
,
2020
, “
Hydrogen Fuel Cell Road Vehicles and Their Infrastructure: An Option Towards an Environmentally Friendly Energy Transition
,”
Energies
,
13
(
22
), p.
6132
.10.3390/en13226132
4.
Zhou
,
C.
,
Liu
,
X.
,
Zheng
,
Y.
, and
Hua
,
Z.
,
2024
, “
A Comprehensive Review of Hydrogen-Induced Swelling in Rubber Composites
,”
Composites, Part B
,
275
, p.
111342
.10.1016/j.compositesb.2024.111342
5.
Symes
,
D.
,
Maillard
,
J. G.
,
Courtney
,
J.
,
Watton
,
J.
,
Meadowcroft
,
A.
,
Chandan
,
A. S.
,
Gurley
,
L.
,
Priestly
,
R.
, and
Serdaroglu
,
G.
,
2014
, “
Development of a Hydrogen Fuelling Infrastructure in the Northeast USA
,”
Int. J. Hydrogen Energy
,
39
(
14
), pp.
7460
7466
.10.1016/j.ijhydene.2014.03.003
6.
Bauer
,
A.
,
Mayer
,
T.
,
Semmel
,
M.
,
Morales
,
M.
, and
Wind
,
B. J.
,
2019
, “
Energetic Evaluation of Hydrogen Refueling Stations With Liquid or Gaseous Stored Hydrogen
,”
Int. J. Hydrogen Energy
,
44
(
13
), pp.
6795
6812
.10.1016/j.ijhydene.2019.01.087
7.
Kim
,
H.
,
Eom
,
M.
, and
Kim
,
B. I.
,
2020
, “
Development of Strategic Hydrogen Refueling Station Deployment Plan for Korea
,”
Int. J. Hydrogen Energy
,
45
(
38
), pp.
19900
19911
.10.1016/j.ijhydene.2020.04.246
8.
Tian
,
Z.
,
Lv
,
H.
,
Zhou
,
W.
,
Zhang
,
C. M.
, and
He
,
P. F.
,
2022
, “
Review on Equipment Configuration and Operation Process Optimization of Hydrogen Refueling Station
,”
Int. J. Hydrogen Energy
,
47
(
5
), pp.
3033
3053
.10.1016/j.ijhydene.2021.10.238
9.
Apostolou
,
D.
, and
Xydis
,
G.
,
2019
, “
A Literature Review on Hydrogen Refuelling Stations and Infrastructure. Current Status and Future Prospects
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109292
.10.1016/j.rser.2019.109292
10.
Zhou
,
C.
,
Yang
,
Z.
,
Chen
,
G.
, and
Li
,
X.
,
2024
, “
Optimizing Hydrogen Refueling Station Layout Based on Consequences of Leakage and Explosion Accidents
,”
Int. J. Hydrogen Energy
,
54
, pp.
817
836
.10.1016/j.ijhydene.2023.09.210
11.
Ye
,
S.
,
Zheng
,
J. Y.
,
Yu
,
T.
,
Gu
,
C. H.
, and
Hua
,
Z. L.
,
2019
, “
Light Weight Design of Multi-Layered Steel Vessels for High-Pressure Hydrogen Storage
,”
ASME
Paper No. PVP2019-93934.10.1115/PVP2019-93934
12.
Yu
,
T.
,
Guo
,
W.
,
Miao
,
C.
,
Zheng
,
J.
, and
Hua
,
Z.
,
2021
, “
Study on Inserted Curved Surface Coupling Phased Array Ultrasonic Inspection of Multi-Layered Steel Vessel for High-Pressure Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
46
(
35
), pp.
18433
18444
.10.1016/j.ijhydene.2021.02.226
13.
Zheng
,
J.
,
Liu
,
X.
,
Xu
,
P.
,
Liu
,
P.
,
Zhao
,
Y.
, and
Yang
,
J.
,
2012
, “
Development of High Pressure Gaseous Hydrogen Storage Technologies
,”
Int. J. Hydrogen Energy
,
37
(
1
), pp.
1048
1057
.10.1016/j.ijhydene.2011.02.125
14.
Hu
,
K.
,
Chen
,
G.
,
Zhou
,
C.
,
Reniers
,
G.
,
Qi
,
S.
, and
Zhou
,
Z.
,
2020
, “
Dynamic Response of a Large Vertical Tank Impacted by Blast Fragments From Chemical Equipment
,”
Saf. Sci.
,
130
, p.
104863
.10.1016/j.ssci.2020.104863
15.
Valsamos
,
G.
,
Casadei
,
F.
,
Solomos
,
G.
, and
Larcher
,
M.
,
2019
, “
Risk Assessment of Blast Events in a Transport Infrastructure by Fluid-Structure Interaction Analysis
,”
Saf. Sci.
,
118
, pp.
887
897
.10.1016/j.ssci.2019.06.014
16.
Dan Tillema
,
P. E.
,
2014
, “
Silver Eagle Refinery Explosion Investigation: Metallurgical Analysis
,” U.S. Chemical Safety and Hazard Investigation Board, Washington, DC, accessed Mar. 21, 2025, https://www.csb.gov/silver-eagle-refinery-flash-fire-and-explosion-and-catastrophic-pipe-explosion/
17.
Du
,
Y.
,
Liu
,
Y.
,
Zhang
,
Z.
,
Ma
,
L.
,
Zhou
,
C.
, and
Liu
,
B.
,
2024
, “
Experimental Investigation on the Deformation and Damage of Steel Ribbon Wound Vessel for Hydrogen Storage Under External Impact and Blast Loading
,”
Int. J. Hydrogen Energy
,
55
, pp.
1017
1027
.10.1016/j.ijhydene.2023.11.209
18.
Yao
,
J.
,
Chen
,
X.
,
Lu
,
H.
,
Xu
,
Z.
,
Zhang
,
Z.
, and
Liu
,
B.
,
2023
, “
Dynamic Response Characteristics and Damage Modes of Multifunctional Layered Hydrogen Storage Vessels Under Impact Loads
,”
Int. J. Hydrogen Energy
,
54
, pp.
526
539
.10.1016/j.ijhydene.2023.08.057
19.
Kong
,
X. S.
,
Wu
,
W. G.
,
Li
,
J.
,
Chen
,
P.
, and
Liu
,
F.
,
2014
, “
Experimental and Numerical Investigation on a Multi-Layer Protective Structure Under the Synergistic Effect of Blast and Fragment Loadings
,”
Int. J. Impact Eng.
,
65
, pp.
146
162
.10.1016/j.ijimpeng.2013.11.009
20.
Wadley
,
H.
,
Dharmasena
,
K. P.
,
O'Masta
,
M. R.
, and
Wetzel
,
J. J.
,
2013
, “
Impact Response of Aluminum Corrugated Core Sandwich Panels
,”
Int. J. Impact Eng.
,
62
, pp.
114
128
.10.1016/j.ijimpeng.2013.06.005
21.
Zhang
,
C. Z.
,
Cheng
,
Y. S.
,
Zhang
,
P.
,
Duan
,
X. F.
,
Liu
,
J.
, and
Li
,
Y.
,
2017
, “
Numerical Investigation of the Response of I-Core Sandwich Panels Subjected to Combined Blast and Fragment Loading
,”
Eng. Struct.
,
151
, pp.
459
471
.10.1016/j.engstruct.2017.08.039
22.
Cai
,
S.
,
Liu
,
J.
,
Zhang
,
P.
,
Li
,
C.
,
Cheng
,
Y.
, and
Chen
,
C.
,
2021
, “
Experimental Study on Failure Mechanisms of Sandwich Panels With Multi-Layered Aluminum Foam/UHMWPE Laminate Core Under Combined Blast and Fragments Loading
,”
Thin-Walled Struct.
,
159
, p.
107227
.10.1016/j.tws.2020.107227
23.
Zhang
,
P.
,
Mo
,
D.
,
Ge
,
X.
,
Wang
,
H.
,
Zhang
,
C.
,
Cheng
,
Y.
, and
Liu
,
J.
,
2022
, “
Experimental Investigation Into the Synergetic Damage of Foam-Filled and Unfilled Corrugated Core Hybrid Sandwich Panels Under Combined Blast and Fragment Loading
,”
Compos. Struct.
,
299
, p.
116089
.10.1016/j.compstruct.2022.116089
24.
Kun
,
F.
,
Wittel
,
F. K.
,
Herrmann
,
H. J.
,
Kroplin
,
B. H.
, and
Maloy
,
K. J.
,
2006
, “
Scaling Behavior of Fragment Shapes
,”
Phys. Rev. Lett.
,
96
(
2
), p.
025504
.10.1103/PhysRevLett.96.025504
25.
Wittel
,
F. K.
,
Kun
,
F.
,
Kroplin
,
B. H.
, and
Herrmann
,
H. J.
,
2006
, “
Study on the Fragmentation of Shells
,”
Int. J. Fract.
,
140
(
1–4
), pp.
243
254
.10.1007/s10704-005-3995-7
26.
Mebarki
,
A.
,
Mercier
,
F.
,
Nguyen
,
Q. B.
, and
Saada
,
R. A.
,
2009
, “
Structural Fragments and Explosions in Industrial Facilities. Part I: Probabilistic Description of the Source Terms
,”
J. Loss Prev. Process Ind.
,
22
, pp.
408
416
.10.1016/j.jlp.2009.02.006
27.
Zhou
,
F.
,
Molinari
,
J. F.
, and
Ramesh
,
K. T.
,
2006
, “
Characteristic Fragment Size Distributions in Dynamic Fragmentation
,”
Appl. Phys. Lett.
,
88
(
26
), p.
261918
.10.1063/1.2216892
28.
Guo
,
Q.
,
Wang
,
Z.
,
Chen
,
J.
,
Guo
,
C.
,
Zhao
,
W.
, and
Wang
,
J.
,
2022
, “
Dynamic Response and Failure Mode of Steel-Concrete Composite Panels Under Low-Velocity Impact
,”
Int. J. Impact Eng.
,
162
, p.
104128
.10.1016/j.ijimpeng.2021.104128
29.
Jin
,
L.
,
Xia
,
M.
,
Zhang
,
R.
,
Lin
,
M.
, and
Du
,
X.
,
2023
, “
Computational Modeling and Dynamic Response of Reinforced Concrete Shear Wall Under Out-of-Plane Impact Loading
,”
Int. J. Impact Eng.
,
172
, p.
104425
.10.1016/j.ijimpeng.2022.104425
30.
Zhu
,
L.
,
Liu
,
Q.
,
Jones
,
N.
, and
Chen
,
M.
,
2018
, “
Experimental Study on the Deformation of Fully Clamped Pipes Under Lateral Impact
,”
Int. J. Impact Eng.
,
111
, pp.
94
105
.10.1016/j.ijimpeng.2017.09.008
31.
Wu
,
Q.
,
Zhi
,
X.
,
Li
,
Q.
, and
Guo
,
M.
,
2019
, “
Experimental and Numerical Studies of GFRP-Reinforced Steel Tube Under Low-Velocity Transverse Impact
,”
Int. J. Impact Eng.
,
127
, pp.
135
153
.10.1016/j.ijimpeng.2019.01.010
32.
Zhang
,
T.
,
Wang
,
Y.
,
Zhai
,
X.
,
Zhi
,
X.
,
Zhou
,
H.
, and
Yu
,
X.
,
2024
, “
Impact Response of Stainless Steel Tube Locally-Strengthened by Concrete-Filled Steel Tube
,”
Int. J. Impact Eng.
,
186
, p.
104895
.10.1016/j.ijimpeng.2024.104895
33.
Zhao
,
Y.
,
Liang
,
M. Y.
,
Liu
,
Q.
,
Zhou
,
Y. C.
, and
Wang
,
Z.
,
2022
, “
Experiment and Numerical Simulation of Thin-Walled Cylindrical Containers Subjected to Lateral Impact
,”
J. Constr. Steel Res.
,
199
, p.
107591
.10.1016/j.jcsr.2022.107591
34.
Hauptmanns
,
U.
,
2001
, “
A Procedure for Analyzing the Flight of Missiles From Explosions of Cylindrical Vessels
,”
J. Loss Prev. Process Ind.
,
14
(
5
), pp.
395
402
.10.1016/S0950-4230(01)00011-0
35.
Du
,
Y.
,
Ma
,
L.
,
Zheng
,
J.
,
Zhang
,
F.
, and
Zhang
,
A.
,
2016
, “
Numerical Prediction on Dynamic Fracture of Tubes Subjected to Internal Gaseous Detonation
,”
Eng. Failure Anal.
,
66
, pp.
489
501
.10.1016/j.engfailanal.2016.05.007
36.
Barsoum
,
I.
,
Lawal
,
S. A.
,
Simmons
,
R. J.
, and
Rodrigues
,
C. C.
,
2018
, “
Failure Analysis of a Pressure Vessel Subjected to an Internal Blast Load
,”
Eng. Failure Anal.
,
91
, pp.
354
369
.10.1016/j.engfailanal.2018.04.037
37.
Lin
,
L.
,
Huang
,
B.
,
Xiao
,
X.
,
Zhu
,
Y.
, and
Xu
,
T.
,
2020
, “
Behavior of Dynamic Material Q355B Steel Based on the Johnson-Cook Model
,”
J. Vib. Shock
,
39
, pp.
231
237
.https://jvs.sjtu.edu.cn/EN/Y2020/V39/I18/231#:~:text=Research%20on%20the%20mechanical%20properties,nonlinearly%20was%20increased%20with%20the
You do not currently have access to this content.