Abstract

Gun propulsion is a special mechanical system where machining errors in its components are inevitable. In particular, the gun barrel, which constitutes the internal combustion system, will be subject to structural changes caused by machining errors, leading to variations in propulsion performance. To comprehensively assess the reliability of the system, this study utilizes a coupled model that facilitates the simulation of the mechanical interaction between projectile and barrel, effectively capturing the system's nonlinear kinematic properties and the combustion behavior of propellant within the variable chamber. A classical simplified combustion model is used to improve computational efficiency without compromising the accuracy of critical performance predictions associated with the propulsion system. The model incorporates variations in the internal structure of the barrel due to machining errors and has been validated through comparison with experimental data. Based on the validated model, the performance variations of the propulsion system when it has machining errors are investigated. Additionally, the axial distribution of the core flow state parameters of propellant gas within the barrel is presented. The findings offer a profound understanding of the impact of structural precision on gun performance and provide valuable insights and recommendations for optimizing gun design.

References

1.
Hu
,
C. B.
, and
Zhang
,
X. B.
,
2018
, “
Performance Variation of a Transient Dynamic Fluid-Structure Interaction System in Different Life Stages and Methods for Maintaining the Performance
,”
Appl. Therm. Eng.
,
130
, pp.
1012
1021
.10.1016/j.applthermaleng.2017.11.075
2.
Ongaro
,
F.
,
Robbe
,
C.
,
Papy
,
A.
,
Stirbu
,
B.
, and
Chabotier
,
A.
,
2024
, “
Modelling of Internal Ballistics of Gun Systems: A Review
,”
Def. Technol.
,
41
, pp.
35
58
.10.1016/j.dt.2024.05.004
3.
Chaturvedi
,
S.
, and
Dave
,
P. N.
,
2019
, “
Solid Propellants: AP/HTPB Composite Propellants
,”
Arab. J. Chem.
,
12
(
8
), pp.
2061
2068
.10.1016/j.arabjc.2014.12.033
4.
Liang
,
T. X.
,
Qi
,
L.
,
Ma
,
Z. L.
,
Xiao
,
Z. L.
,
Wang
,
Y.
,
Liu
,
H.
,
Zhang
,
J.
,
Guo
,
Z.
,
Liu
,
C.
,
Xie
,
W.
,
Ding
,
T.
, and
Lu
,
N.
,
2019
, “
Experimental Study on Thermal Expansion Coefficient of Composite Multi-Layered Flaky Gun Propellants
,”
Compos. Part B Eng.
,
166
, pp.
428
435
.10.1016/j.compositesb.2019.02.024
5.
Fan
,
W. H.
,
Ding
,
Y. J.
, and
Xiao
,
Z. L.
,
2024
, “
A Brand New Green Coating Technology for Realizing the Regulation of Spherical Propellant Energy Release Process
,”
Def. Technol.
, 36, pp.
78
94
.10.1016/j.dt.2024.02.008
6.
Degirmenci
,
E.
,
2015
, “
Effects of Grain Size and Temperature of Double Base Solid Propellants on Internal Ballistics Performance
,”
Fuel
,
146
, pp.
95
102
.10.1016/j.fuel.2015.01.027
7.
Değirmenci
,
E.
,
Evci
,
C.
,
Işık
,
H.
,
Macar
,
M.
,
Yılmaz
,
N.
,
Dirikolu
,
M. H.
, and
Çelik
,
V.
,
2016
, “
Thermo-Mechanical Analysis of Double Base Propellant Combustion in a Barrel
,”
Appl. Therm. Eng.
,
102
, pp.
1287
1299
.10.1016/j.applthermaleng.2016.04.062
8.
Wang
,
Y. B.
,
Jiang
,
L. M.
,
Dong
,
J.
,
Li
,
B.
,
Shen
,
J. P.
,
Chen
,
L.
,
Fu
,
Y.
, and
He
,
W.
,
2020
, “
Three-Dimensional Network Structure Nitramine Gun Propellant With Nitrated Bacterial Cellulose
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
15094
15101
.10.1016/j.jmrt.2020.10.097
9.
Dîrloman
,
F. M.
,
Rotariu
,
A. N.
,
Rotariu
,
T.
,
Noja
,
G. F.
,
Ginghină
,
R. E.
, and
Zvîncu
,
N. D.
,
2024
, “
Ballistic and Thermal Characterisation of Greener Composite Solid Propellants Based on Phase Stabilized Ammonium Nitrate
,”
Case Stud. Therm. Eng.
,
54
, p.
103987
.10.1016/j.csite.2024.103987
10.
Dong
,
X. L.
,
Rui
,
X. T.
, and
Li
,
C.
,
2023
, “
Interior Ballistic Two-Phase Flow Model and Its Calculation for a Mixed Charge Structure
,”
Int. Commun. Heat Mass Transfer
,
144
, p.
106788
.10.1016/j.icheatmasstransfer.2023.106788
11.
Yang
,
W. T.
,
Hu
,
R.
,
Zheng
,
L.
,
Yan
,
G. H.
, and
Yan
,
W. R.
,
2020
, “
Fabrication and Investigation of 3D-Printed Gun Propellants
,”
Mater. Des.
,
192
, p.
108761
.10.1016/j.matdes.2020.108761
12.
Li
,
M. M.
,
Yang
,
W. T.
,
Xu
,
M. H.
,
Hu
,
R.
, and
Zheng
,
L.
,
2021
, “
Study of Photocurable Energetic Resin Based Propellants Fabricated by 3D Printing
,”
Mater. Des.
,
207
, p.
109891
.10.1016/j.matdes.2021.109891
13.
Zhang
,
R. H.
,
Rui
,
X. T.
,
Li
,
C.
,
Wang
,
Y.
,
Zhao
,
X.
, and
Dong
,
X. L.
,
2020
, “
A Calculation Method of Interior Ballistic Two-Phase Flow Considering the Compression and Fracture Process of Propellant Bed
,”
Int. Commun. Heat Mass Transfer
,
115
, p.
104601
.10.1016/j.icheatmasstransfer.2020.104601
14.
Cheng
,
S. S.
,
Jiang
,
K.
,
Xue
,
S.
,
Tao
,
R. Y.
, and
Lu
,
X. G.
,
2023
, “
Performance Analysis of Internal Ballistic Multiphase Flow of Composite Charge Structure
,”
Energies
,
16
(
5
), p.
2127
.10.3390/en16052127
15.
Andrews
,
T. D.
,
2006
, “
Projectile Driving Band Interactions With Gun Barrels
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
273
278
.10.1115/1.2172965
16.
Wu
,
B.
,
Zheng
,
J.
,
Tian
,
Q. T.
,
Zou
,
Z. Q.
,
Yu
,
X. H.
, and
Zhang
,
K. S.
,
2014
, “
Tribology of Rotating Band and Gun Barrel During Engraving Process Under Quasi-Static and Dynamic Loading
,”
Friction
,
2
(
4
), pp.
330
342
.10.1007/s40544-014-0061-3
17.
Wu
,
B.
,
Zheng
,
J.
,
Tian
,
Q. T.
,
Zou
,
Z. Q.
,
Chen
,
X. L.
, and
Zhang
,
K. S.
,
2014
, “
Friction and Wear Between Rotating Band and Gun Barrel During Engraving Process
,”
Wear
,
318
(
1–2
), pp.
106
113
.10.1016/j.wear.2014.06.020
18.
Yang
,
L. Z.
, and
Cheng
,
Y. C.
,
2016
, “
Study on the Influence of the Slope-Angle to the Bullet Projectile
,”
Proceedings of the 2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2016)
,
Atlantis Press
,
Hangzhou, China, Apr. 9–10
.10.2991/ameii-16.2016.95
19.
Yang
,
M.
, and
Zhang
,
X. W.
,
2023
, “
Experimental Study and Numerical Calculation of Projectile Dynamic Engraving Process
,”
J. Phys. Conf. Ser.
,
2478
(
8
), p.
082006
.10.1088/1742-6596/2478/8/082006
20.
Ding
,
C. J.
,
Liu
,
N.
, and
Zhang
,
X. Y.
,
2017
, “
A Mesh Generation Method for Worn Gun Barrel and Its Application in Projectile-Barrel Interaction Analysis
,”
Finite Elem. Anal. Des.
,
124
, pp.
22
32
.10.1016/j.finel.2016.10.003
21.
Li
,
Z.
,
Ge
,
J. L.
,
Yang
,
G. L.
, and
Tang
,
J.
,
2016
, “
Modeling and Dynamic Simulation on Engraving Process of Rotating Band Into Rifled Barrel Using Three Different Numerical Methods
,”
J. Vibroeng.
,
18
(
2
), pp.
768
780
.10.21595/jve.2016.16709
22.
Guo
,
J. H.
,
Yao
,
X. F.
,
Qiao
,
J. M.
,
Li
,
Y. L.
, and
Zhang
,
X. D.
,
2020
, “
An Investigation on Plastic Deformation of Rotating Band for Large Caliber Gun Projectile During Engraving Process
,”
J. Phys. Conf. Ser.
,
1507
(
8
), p.
082006
.10.1088/1742-6596/1507/8/082006
23.
Xin
,
T.
,
Yang
,
G. L.
,
Xu
,
F. J.
,
Sun
,
Q. Z.
, and
Minak
,
A.
,
2021
, “
Modeling, Simulation and Uncertain Optimization of the Gun Engraving System
,”
Mathematics
,
9
(
4
), p.
398
.10.3390/math9040398
24.
Dhouibi
,
M.
,
Ousji
,
H.
,
Atoui
,
O.
,
Nassri
,
R.
, and
Pirlot
,
M.
,
2022
, “
Modeling and Simulation of the Engraving Process in Different Life Stages of Small Caliber Guns
,”
ASME J. Pressure Vessel Technol.
,
144
(
5
), p. 051303.10.1115/1.4053479
25.
Leonhardt
,
D.
, and
Garnich
,
M.
,
2022
, “
Combined Experimental/Finite Element Investigation of Transverse Barrel Movement
,”
ASME J. Pressure Vessel Technol.
,
144
(
4
), p. 041306.10.1115/1.4053053
26.
Wang
,
M. M.
,
Qian
,
L. F.
,
Chen
,
G. S.
,
Lin
,
T.
,
Shi
,
J. F.
, and
Zhou
,
S. J.
,
2024
, “
High-Dimensional Uncertainty Quantification of Projectile Motion in the Barrel of a Truck-Mounted Howitzer Based on Probability Density Evolution Method
,”
Def. Technol.
,
32
, pp.
209
221
.10.1016/j.dt.2023.03.004
27.
Qian
,
L. F.
, and
Chen
,
G. S.
,
2017
, “
The Uncertainty Propagation Analysis of the Projectile-Barrel Coupling Problem
,”
Def. Technol.
,
13
(
4
), pp.
229
233
.10.1016/j.dt.2017.06.005
28.
Cao
,
R. D.
, and
Zhang
,
X. B.
,
2019
, “
Design Optimization for a Launching System With Novel Structure
,”
Def. Technol.
,
15
(
5
), pp.
680
689
.10.1016/j.dt.2019.08.005
29.
Li
,
P. F.
, and
Zhang
,
X. B.
,
2021
, “
Numerical Research on Adverse Effect of Muzzle Flow Formed by Muzzle Brake Considering Secondary Combustion
,”
Def. Technol.
,
17
(
4
), pp.
1178
1189
.10.1016/j.dt.2020.06.019
30.
Qin
,
Q. Y.
, and
Zhang
,
X. B.
,
2016
, “
Numerical Investigation on Combustion in Muzzle Flows Using an Inert Gas Labeling Method
,”
Int. J. Heat Mass Transfer
,
101
, pp.
91
103
.10.1016/j.ijheatmasstransfer.2016.05.009
31.
Wang
,
Y. T.
, and
Zhang
,
X. B.
,
2023
, “
Numerical Investigation on Muzzle Flow Characteristics for Small Combustion Chamber With Embedded Propelled Body
,”
Structures
,
50
, pp.
1783
1793
.10.1016/j.istruc.2023.03.001
32.
Zhou
,
Q. B.
,
Rui
,
X. T.
,
Yang
,
F. F.
,
Wang
,
G. P.
,
Tu
,
T. X.
, and
Wang
,
N.
,
2018
, “
Measurement of Projectile's in-Bore Yaw Based on the Optical Lever Principle
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
232
(
12
), pp.
2378
2394
.10.1177/0954410017735126
33.
Chen
,
Y.
,
Yang
,
G. L.
,
Zhou
,
H. G.
, and
Sun
,
Q. Z.
,
2021
, “
Sequential Approximate Optimization on Projectile Disturbances of the Moving Tank Based on BP Neural Network
,”
J. Mech. Sci. Technol.
,
35
(
3
), pp.
935
944
.10.1007/s12206-021-0206-z
34.
Dong
,
X. L.
,
Rui
,
X. T.
,
Li
,
C.
,
Wang
,
Y.
, and
Fan
,
L. L.
,
2021
, “
A Calculation Method of Interior Ballistic Two-Phase Flow Considering the Recoil of Gun Barrel
,”
Appl. Therm. Eng.
,
185
, p.
116239
.10.1016/j.applthermaleng.2020.116239
35.
Kong
,
L. Q.
,
Wang
,
J. X.
,
Song
,
H. P.
,
Tang
,
K.
,
Chen
,
R. M.
,
Li
,
Y. B.
,
Gong
,
H. X.
, and
Cai
,
S. Y.
,
2024
, “
Effect of Modified Method Based on Recoil Motion on Interior Ballistic Performance of Ultralight High-Low Pressure Artillery
,”
Case Stud. Therm. Eng.
,
53
, p.
103957
.10.1016/j.csite.2023.103957
36.
Sopok
,
S.
,
Rickard
,
C.
, and
Dunn
,
S.
,
2005
, “
Thermal–Chemical–Mechanical Gun Bore Erosion of an Advanced Artillery System Part One: Theories and Mechanisms
,”
Wear
,
258
(
1–4
), pp.
659
670
.10.1016/j.wear.2004.09.031
37.
Li
,
S. L.
,
Wang
,
L. Q.
, and
Yang
,
G. L.
,
2023
, “
Unified Computational Model of Thermochemical Erosion and Mechanical Wear in Artillery Barrel Considering Hydrodynamic Friction
,”
Numer. Heat Transf. Part Appl.
, pp.
1
21
.10.1080/10407782.2023.2269604
38.
Kumar
,
D.
,
Kalra
,
S.
, and
Jha
,
M. S.
,
2022
, “
A Concise Review on Degradation of Gun Barrels and Its Health Monitoring Techniques
,”
Eng. Fail. Anal.
,
142
, p.
106791
.10.1016/j.engfailanal.2022.106791
39.
Shen
,
C.
,
Zhou
,
K. D.
,
Lu
,
Y.
, and
Li
,
J. S.
,
2019
, “
Modeling and Simulation of Bullet-Barrel Interaction Process for the Damaged Gun Barrel
,”
Def. Technol.
,
15
(
6
), pp.
972
986
.10.1016/j.dt.2019.07.009
40.
Hordijk
,
A. C.
, and
Leurs
,
O.
,
2006
, “
Gun Barrel Erosion—Comparison of Conventional and LOVA Gun Propellants
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
246
250
.10.1115/1.2172956
41.
Mishra
,
A.
,
Hameed
,
A.
, and
Lawton
,
B.
,
2010
, “
A Novel Scheme for Computing Gun Barrel Temperature History and Its Experimental Validation
,”
ASME J. Pressure Vessel Technol.
,
132
(
6
), p. 061202.10.1115/1.4001740
42.
Petitpas
,
E.
, and
Campion
,
B.
,
2003
, “
Crack Propagation in a Gun Barrel Due to the Firing Thermo-Mechanical Stresses
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
293
298
.10.1115/1.1592813
43.
Hou
,
Z. B.
,
Peng
,
S. Y.
,
Yu
,
Q. M.
, and
Shao
,
X. J.
,
2022
, “
Interface Crack Behavior of Thermal Protection Coating of Gun Bores Under Transient Convective Cooling
,”
Eng. Fail. Anal.
,
137
, p.
106411
.10.1016/j.engfailanal.2022.106411
44.
Xiao
,
Y. T.
,
Ding
,
S. K.
, and
Zhang
,
X. B.
,
2024
, “
A Fluid-Solid-Thermal Coupling Method to Obtain Thermal Effects of Three-Phase Reactive Flow in a Growing Combustion Chamber
,”
Int. Commun. Heat Mass Transfer
,
159
, p.
108031
.10.1016/j.icheatmasstransfer.2024.108031
45.
Chen
,
Y. C.
,
Song
,
Q. Z.
, and
Wang
,
J. Z.
,
2006
, “
New Technologies to Extend the Erosion Life of Gun Barrel
,”
Acta Armamentarii
,
27
(
2
), pp.
330
334
.
46.
Chevalier
,
O.
,
Langlet
,
A.
,
Fouché-Sanseigne
,
L.
, and
Guilmard
,
Y.
,
2015
, “
Assessment of the Lifetime of Gun Barrels Under High-Speed Moving Loads
,”
ASME J. Pressure Vessel Technol.
,
137
(
1
), p.
015001
.10.1115/1.4027306
47.
Sun
,
Q. Z.
,
Chen
,
L.
,
Zhang
,
J.
,
Song
,
Y. M.
,
Yang
,
G. L.
, and
Lu
,
B. C.
,
2021
, “
Optimization Design of an Efficient Evacuator for Gun Barrels
,”
ASME J. Pressure Vessel Technol.
,
143
(
6
), p. 064504.10.1115/1.4051276
48.
Zhang
,
X. B.
,
2014
,
Interior Ballistics of Guns
,
Beijing Institute of Technology Press
,
Beijing, China
.
49.
Le Métayer
,
O.
, and
Saurel
,
R.
,
2016
, “
The Noble-Abel Stiffened-Gas Equation of State
,”
Phys. Fluids
,
28
(
4
), p.
046102
.10.1063/1.4945981
50.
Yu
,
Q. B.
, and
Yang
,
G. L.
,
2019
, “
Dynamic Stress Analysis on Barrel Considering the Radial Effect of Propellant Gas Flow
,”
ASME J. Pressure Vessel Technol.
,
141
(
1
), p.
011202
.10.1115/1.4041974
51.
Bohnsack
,
E.
,
2006
, “
Dynamical Loading of the Muzzle Area of a Gun Barrel Including a Muzzle Brake
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
285
289
.10.1115/1.2172961
52.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
,
The Hague, The Netherlands
, Apr. 19–21, Vol. 21, pp.
541
547
.https://ia800406.us.archive.org/4/items/AConstitutiveModelAndDataForMetals/A%20constitutive%20model%20and%20data%20for%20metals_text.pdf
53.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.10.1016/0013-7944(85)90052-9
54.
Qian
,
L. F.
,
2009
,
Artillery Ballistics
,
Beijing Institute of Technology Press
, Beijing, China.
55.
Hu
,
C. B.
, and
Zhang
,
X. B.
,
2020
, “
A Coupled Computational Framework for the Transient Heat Transfer in a Circular Pipe Heated Internally With Expanding Heat Sources
,”
ASME J. Pressure Vessel Technol.
,
142
(
6
), p.
061401
.10.1115/1.4047711
56.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping-Schemes
,”
AIAA
Paper No. 81-1259.10.2514/6.1981?1259
57.
Chen
,
P. C.
, and
Leach
,
M.
,
2001
, “
Modeling of Barrel/Projectile Interaction in a Rotating Band
,”
Benet Lab.
,
Watervliet, NY
, Report No.
ARCCB-TR-01011
.https://apps.dtic.mil/sti/tr/pdf/ADA392148.pdf
58.
Rui
,
X. T.
,
Liu
,
Y. X.
, and
Yu
,
H. L.
,
2011
,
Launch Dynamics of Tank and Self-Propelled Artillery
,
Science Press
,
Beijing, China
.
59.
Hu
,
C. B.
, and
Zhang
,
X. B.
,
2018
, “
A Fluid-Structure Coupling Method to Obtain Parameter Distributions in a Combustion Chamber With Moving Boundaries
,”
Appl. Therm. Eng.
,
141
, pp.
1048
1054
.10.1016/j.applthermaleng.2018.06.063
60.
Li
,
Z. Y.
,
Tao
,
G.
,
Ren
,
B. X.
, and
Wang
,
X. F.
,
2023
, “
A Chamber Pressure Prediction Method Based on Strain Measurement of Composite Barrel Recoilless Guns
,”
J. Phys. Conf. Ser.
,
2460
(
1
), p.
012117
.10.1088/1742-6596/2460/1/012117
61.
Zhang
,
Y. D.
,
Xue
,
T.
, and
Zhang
,
X. B.
,
2024
, “
Investigation of Heat Transfer in Cracked Gun Barrels
,”
Int. J. Therm. Sci.
,
201
, p.
109024
.10.1016/j.ijthermalsci.2024.109024
62.
Sun
,
Q. Z.
,
Yang
,
G. L.
, and
Ge
,
J. L.
,
2017
, “
Modeling and Simulation on Engraving Process of Projectile Rotating Band Under Different Charge Cases
,”
J. Vib. Control
,
23
(
6
), pp.
1044
1054
.10.1177/1077546315587806
63.
Li
,
X. L.
,
Wang
,
Y.
,
Zang
,
Y.
,
Guan
,
B.
, and
Qin
,
Q.
,
2019
, “
Analysis of Interior Ballistic Performance Degradation of a Worn Gun Barrel Based on Finite Element Method
,”
J. Phys. Conf. Ser.
,
1314
(
1
), p.
012090
.10.1088/1742-6596/1314/1/012090
You do not currently have access to this content.