Abstract

Flange connections are widely used in industries such as petrochemicals and nuclear power, where they encounter complex mechanical and thermal loads, making them potential sources of leakage. Leakage not only affects the continuity of production but can also lead to significant economic and personnel losses in severe cases. This paper proposes a leakage rate prediction model for flange connections based on the relative compressive deformation of gaskets, while also accounting for the effects of gasket creep. The parameter values for the leakage rate prediction model were obtained by fitting the data from the gasket sealing performance tests. Leakage rate testing was conducted on a DN50 flange connection device under internal pressure and static bending moment loads, with the corresponding leakage rates obtained through a pressure drop method. It was found that, under the same static bending moment, the leakage rate decreased as the pressure was reduced; conversely, under the same internal pressure, the leakage rate increased with an increase in bending moment. Numerical calculations were performed to analyze the deformation of the gasket in flange connections under different external loads, considering the effects of gasket creep, leading to the calculation of the relationship curve between leakage rate and medium pressure. A comparison between the simulated predicted leakage rates and experimental values showed good agreement, validating the accuracy of the leakage rate prediction model.

References

1.
Pérez-Ràfols
,
F.
,
Larsson
,
R.
, and
Almqvist
,
A.
,
2016
, “
Modelling of Leakage on Metal-to-Metal Seals
,”
Tribol. Int.
,
94
, pp.
421
427
.10.1016/j.triboint.2015.10.003
2.
Luyt
,
P. C. B.
,
Theron
,
N. J.
, and
Pietra
,
F.
,
2017
, “
Non-Linear Finite Element Modelling and Analysis of the Effect of Gasket Creep-Relaxation on Circular Bolted Flange Connections
,”
Int. J. Pressure Vessels Piping
,
150
, pp.
52
61
.10.1016/j.ijpvp.2016.12.001
3.
Nelson
,
N. R.
, and
Prasad
,
N. S.
,
2016
, “
Sealing Behavior of Twin Gasketed Flange Joints
,”
Int. J. Pressure Vessels Piping
,
138
, pp.
45
50
.10.1016/j.ijpvp.2016.01.001
4.
Zheng
,
X. T.
,
Dai
,
W. C.
,
Chen
,
H. F.
, and
Shen
,
J.
,
2018
, “
Ratcheting Effect of Reinforced Graphite Sheet With Stainless Steel Insert (RGSWSSI) Under Cyclic Compression at Elevated Temperature
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
11
), pp.
2391
2401
.10.1111/ffe.12847
5.
Zhu
,
L.
,
Hong
,
J.
, and
Jiang
,
X.
,
2016
, “
On Controlling Preload and Estimating Anti-Loosening Performance in Threaded Fasteners Based on Accurate Contact Modeling
,”
Tribol. Int.
,
95
, pp.
181
191
.10.1016/j.triboint.2015.11.006
6.
Wang
,
J.
,
Li
,
Y.
, and
Dai
,
F.
,
2016
, “
A Micromechanical Relaxation Model of Composite Bolted Connections Based on Viscoelastic Theory
,”
Compos. Struct.
,
146
, pp.
14
25
.10.1016/j.compstruct.2016.02.059
7.
Zhu
,
L.
,
Bouzid
,
A. H.
, and
Hong
,
J.
,
2018
, “
Analytical Evaluation of Elastic Interaction in Bolted Flange Joints
,”
Int. J. Pressure Vessels Piping
,
165
, pp.
176
184
.10.1016/j.ijpvp.2018.06.012
8.
Haruyama
,
S.
,
Nurhadiyanto
,
D.
,
Choiron
,
M. A.
, and
Kaminishi
,
K.
,
2013
, “
Influence of Surface Roughness on Leakage of New Metal Gasket
,”
Int. J. Pressure Vessels Piping
,
111–112
, pp.
146
154
.10.1016/j.ijpvp.2013.06.004
9.
Abid
,
M.
, and
Nash
,
D. H.
,
2004
, “
A Parametric Study of Metal-to-Metal Contact Flanges With Optimised Geometry for Safe Stress and No-Leak Conditions
,”
Int. J. Pressure Vessels Piping
,
81
(
1
), pp.
67
74
.10.1016/j.ijpvp.2003.11.012
10.
Elkhlaidy
,
M.
,
Carnicero
,
A.
, and
Perera
,
R.
,
2023
, “
Influence of Flange Geometric Configuration and Bolt Stress on Joint Integrity During Assembly Using FEA
,”
Int. J. Pressure Vessels Piping
,
202
, p.
104912
.10.1016/j.ijpvp.2023.104912
11.
Marchand
,
L.
,
Derenne
,
M.
, and
Masi
,
V.
,
2005
, “
Predicting Gasket Leak Rates Using a Laminar-Molecular Flow Model
,”
ASME
Paper No. PVP2005-71389.10.1115/PVP2005-71389
12.
Jolly
,
P.
, and
Marchand
,
L.
,
2009
, “
Leakage Predictions for Static Gasket Based on the Porous Media Theory
,”
ASME J. Pressure Vessel Technol.
,
131
(
2
), p.
021203
.10.1115/1.3008031
13.
Sun
,
Z.
, and
Gu
,
B.
,
2009
, “
Effect of External Bending Moment and Creep on Sealing Behavior of Bolted Flanged Connections
,”
International Conference on Measuring Technology and Mechatronics Automation
, Zhangjiajie, Hunan, China, Apr. 11–12, pp.
75
78
.10.1109/ICMTMA.2009.459
14.
Omiya
,
Y.
,
Sawa
,
T.
, and
Takagi
,
Y.
,
2014
, “
Stress Analysis and Design of Bolted Flange Connections Under Internal Pressure
,”
ASME
Paper No. PVP2014-28606.10.1115/PVP2014-28606
15.
Ma
,
B.
,
Jin
,
F.
,
Sun
,
Z.
, and
Guo
,
X.
,
2018
, “
Leakage Analysis of Bolted Flange Joints Considering Surface Roughness: A Theoretical Model
,”
Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
,
232
(
2
), pp.
203
233
.10.1177/0954408917705356
16.
Persson
,
B. N. J.
,
Albohr
,
O.
,
Creton
,
C.
, and
Peveri
,
V.
,
2004
, “
Contact Area Between a Viscoelastic Solid and a Hard, Randomly Rough, Substrate
,”
J. Chem. Phys.
,
120
(
18
), pp.
8779
8793
.10.1063/1.1697376
17.
Persson
,
B. N. J.
,
Albohr
,
O.
,
Tartaglino
,
U.
,
Volokitin
,
A. I.
, and
Tosatti
,
E.
,
2005
, “
On the Nature of Surface Roughness With Application to Contact Mechanics, Sealing, Rubber Friction and Adhesion
,”
J. Phys.: Condens. Matter
,
17
(
1
), pp.
R1
R62
.10.1088/0953-8984/17/1/R01
18.
Aweimer
,
A. S. O.
, and
Bouzid
,
A.-H.
,
2018
, “
Experimental Investigation of Interfacial and Permeation Leak Rates in Sheet Gaskets and Valve Stem Packing
,”
ASME
Paper No. PVP2018-85112.10.1115/PVP2018-85112
19.
Sato
,
K.
,
Sawa
,
T.
,
Morimoto
,
R.
, and
Kobayashi
,
T.
,
2017
, “
FEM Stress Analysis and Mechanical Characteristics of Bolted Pipe Flange Connections With PTFE Blended Gaskets Subjected to External Bending Moments and Internal Pressure
,”
ASME
Paper No. PVP2017-65332.10.1115/PVP2017-65332
20.
Japanese Industrial Standards Committee, Standards Board, Technical Committee on Machine Elements
,
2008
, “
Test Method for Sealing Behavior of Gaskets for Pipe Flange
,”
Japanese Standards Association
,
Tokyo, Japan
, Standard No. JIS B 2490.
21.
Gu
,
B.
,
Chen
,
Y.
, and
Zhu
,
D.
,
2007
, “
Prediction of Leakage Rates Through Sealing Connections With Nonmetallic Gaskets
,”
Chin. J. Chem. Eng.
,
15
(
6
), pp.
837
841
.10.1016/S1004-9541(08)60011-7
22.
Negyesi
,
M.
,
Kraus
,
M.
,
Mares
,
V.
,
Kwon
,
D.
, and
Strnadel
,
B.
,
2023
, “
Creep Damaged Microstructure and Mechanical Properties of Cr-Mo-V Steel Subjected to Long-Term Service Exposures
,”
Int. J. Pressure Vessels Piping
,
206
, p.
105085
.10.1016/j.ijpvp.2023.105085
23.
Cheng
,
Z.
,
Liao
,
R.
,
Lu
,
W.
, and
Wang
,
D.
,
2017
, “
Fatigue Notch Factors Prediction of Rough Specimen by the Theory of Critical Distance
,”
Int. J. Fatigue
,
104
, pp.
195
205
.10.1016/j.ijfatigue.2017.07.004
24.
Lutkiewicz
,
P.
,
Robertson
,
D.
, and
Pulvino
,
M.
,
2019
, “
Establishment of Industry Standard Flange Sealing Effectiveness Measure (Leakage Rate Based) Methodology
,”
ASME
Paper No. PVP2019-94054.10.1115/PVP2019-94054
25.
Yastrebov
,
V. A.
,
Durand
,
J.
,
Proudhon
,
H.
, and
Cailletaud
,
G.
,
2011
, “
Rough Surface Contact Analysis by Means of the Finite Element Method and of a New Reduced Model
,”
C. R. Mech.
,
339
(
7–8
), pp.
473
490
.10.1016/j.crme.2011.05.006
26.
Zhuang
,
F.
,
Xi
,
G.
,
Li
,
X.
,
Xu
,
R.
,
Lin
,
J.
,
Song
,
C.
, and
Xu
,
D.
,
2017
, “
Research on Leakage Rate Prediction Model of Flange Joint Based on Bolt Force
,”
Process Equip. Piping
,
54
, pp.
1
5
.
27.
Li
,
Y.
,
Shi
,
Z.
,
Lin
,
J.
,
Yang
,
Y.-L.
, and
Rong
,
Q.
,
2017
, “
Extended Application of a Unified Creep-Ageing Constitutive Model to Multistep Heat Treatment of Aluminium Alloys
,”
Mater. Des.
,
122
, pp.
422
432
.10.1016/j.matdes.2017.03.023
28.
Liu
,
H.
,
Zhang
,
L.
,
Lu
,
K.
, and
Gao
,
B.
,
2023
, “
Study of Cyclic Plasticity and Creep Ratchet Behavior of PTFE
,”
Appl. Sci.
,
13
(
18
), p.
10039
.10.3390/app131810039
You do not currently have access to this content.