Abstract

Multifidelity surrogate modeling offers a cost-effective approach to reducing extensive evaluations of expensive physics-based simulations for reliability prediction. However, considering spatial uncertainties in multifidelity surrogate modeling remains extremely challenging due to the curse of dimensionality. To address this challenge, this paper introduces a deep learning-based multifidelity surrogate modeling approach that fuses multifidelity datasets for high-dimensional reliability analysis of complex structures. It first involves a heterogeneous dimension transformation approach to bridge the gap in terms of input format between the low-fidelity and high-fidelity domains. Then, an explainable deep convolutional dimension-reduction network (ConvDR) is proposed to effectively reduce the dimensionality of the structural reliability problems. To obtain a meaningful low-dimensional space, a new knowledge reasoning-based loss regularization mechanism is integrated with the covariance matrix adaptation evolution strategy (CMA-ES) to encourage an unbiased linear pattern in the latent space for reliability prediction. Then, the high-fidelity data can be utilized for bias modeling using Gaussian process (GP) regression. Finally, Monte Carlo simulation (MCS) is employed for the propagation of high-dimensional spatial uncertainties. Two structural examples are utilized to validate the effectiveness of the proposed method.

References

1.
Shimoda
,
M.
, and
Tani
,
S.
,
2021
, “
Simultaneous Shape and Topology Optimization Method for Frame Structures With Multi-Materials
,”
Struct. Multidiscip. Optim.
,
64
(
2
), pp.
699
720
.10.1007/s00158-021-02871-w
2.
Feng
,
Y.
,
Wu
,
D.
,
Liu
,
L.
,
Gao
,
W.
, and
Tin-Loi
,
F.
,
2020
, “
Safety Assessment for Functionally Graded Structures With Material Nonlinearity
,”
Struct. Saf.
,
86
, p.
101974
.10.1016/j.strusafe.2020.101974
3.
Li
,
Y.
,
Zhang
,
Y.
, and
Kennedy
,
D.
,
2018
, “
Reliability Analysis of Subsea Pipelines Under Spatially Varying Ground Motions by Using Subset Simulation
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
74
83
.10.1016/j.ress.2017.12.006
4.
Bonfigli
,
M. F.
,
Materazzi
,
A. L.
, and
Breccolotti
,
M.
,
2017
, “
Influence of Spatial Correlation of Core Strength Measurements on the Assessment of In Situ Concrete Strength
,”
Struct. Saf.
,
68
, pp.
43
53
.10.1016/j.strusafe.2017.05.005
5.
Greene
,
M. S.
,
Liu
,
Y.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2011
, “
Computational Uncertainty Analysis in Multiresolution Materials Via Stochastic Constitutive Theory
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
1–4
), pp.
309
325
.10.1016/j.cma.2010.08.013
6.
Wang
,
Z.
,
2017
, “
Piecewise Point Classification for Uncertainty Propagation With Nonlinear Limit States
,”
Struct. Multidiscip. Optim.
,
56
(
2
), pp.
285
296
.10.1007/s00158-017-1664-x
7.
Li
,
M.
, and
Wang
,
Z.
,
2019
, “
Surrogate Model Uncertainty Quantification for Reliability-Based Design Optimization
,”
Reliab. Eng. Syst. Saf.
,
192
, p.
106432
.10.1016/j.ress.2019.03.039
8.
Wei
,
X.
, and
Du
,
X.
,
2019
, “
Uncertainty Analysis for Time-and Space-Dependent Responses With Random Variables
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021402
.10.1115/1.4041429
9.
Li
,
M.
, and
Wang
,
Z.
,
2020
, “
Heterogeneous Uncertainty Quantification Using Bayesian Inference for Simulation-Based Design Optimization
,”
Struct. Saf.
,
85
, p.
101954
.10.1016/j.strusafe.2020.101954
10.
Sedehi
,
O.
,
Papadimitriou
,
C.
, and
Katafygiotis
,
L. S.
,
2022
, “
Hierarchical Bayesian Uncertainty Quantification of Finite Element Models Using Modal Statistical Information
,”
Mech. Syst. Signal Process.
,
179
, p.
109296
.10.1016/j.ymssp.2022.109296
11.
Lu
,
Q.
,
Wang
,
L.
, and
Li
,
L.
,
2022
, “
Efficient Uncertainty Quantification of Stochastic Problems in CFD by Combination of Compressed Sensing and POD-Kriging
,”
Comput. Methods Appl. Mech. Eng.
,
396
, p.
115118
.10.1016/j.cma.2022.115118
12.
Li
,
M.
, and
Wang
,
Z.
,
2022
, “
Deep Reliability Learning With Latent Adaptation for Design Optimization Under Uncertainty
,”
Comput. Methods Appl. Mech. Eng.
,
397
, p.
115130
.10.1016/j.cma.2022.115130
13.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2016
,
Simulation and the Monte Carlo Method
,
Wiley
,
Hoboken, NJ
.
14.
Li
,
H. S.
, and
Cao
,
Z. J.
,
2016
, “
Matlab Codes of Subset Simulation for Reliability Analysis and Structural Optimization
,”
Struct. Multidiscip. Optim.
,
54
(
2
), pp.
391
410
.10.1007/s00158-016-1414-5
15.
Zhang
,
X.
,
Lu
,
Z.
,
Yun
,
W.
,
Feng
,
K.
, and
Wang
,
Y.
,
2020
, “
Line Sampling-Based Local and Global Reliability Sensitivity Analysis
,”
Struct. Multidiscip. Optim.
,
61
(
1
), pp.
267
281
.10.1007/s00158-019-02358-9
16.
Shayanfar
,
M. A.
,
Barkhordari
,
M. A.
,
Barkhori
,
M.
, and
Barkhori
,
M.
,
2018
, “
An Adaptive Directional Importance Sampling Method for Structural Reliability Analysis
,”
Struct. Saf.
,
70
, pp.
14
20
.10.1016/j.strusafe.2017.07.006
17.
Song
,
C.
, and
Kawai
,
R.
,
2023
, “
Monte Carlo and Variance Reduction Methods for Structural Reliability Analysis: A Comprehensive Review
,”
Probab. Eng. Mech.
,
73
, p.
103479
.10.1016/j.probengmech.2023.103479
18.
Cheng
,
K.
,
Papaioannou
,
I.
,
Lu
,
Z.
,
Zhang
,
X.
, and
Wang
,
Y.
,
2023
, “
Rare Event Estimation With Sequential Directional Importance Sampling
,”
Struct. Saf.
,
100
, p.
102291
.10.1016/j.strusafe.2022.102291
19.
Kaymaz
,
I.
,
2005
, “
Application of Kriging Method to Structural Reliability Problems
,”
Struct. Saf.
,
27
(
2
), pp.
133
151
.10.1016/j.strusafe.2004.09.001
20.
Wu
,
H.
,
Xu
,
Y.
,
Liu
,
Z.
, and
Wang
,
P.
,
2023
, “
Mean Time to Failure Prediction for Complex Systems With Adaptive Surrogate Modeling
,”
ASME
Paper No. DETC2023-117177.10.1115/DETC2023-117177
21.
Kang
,
F.
,
Xu
,
Q.
, and
Li
,
J.
,
2016
, “
Slope Reliability Analysis Using Surrogate Models Via New Support Vector Machines With Swarm Intelligence
,”
Appl. Math. Modell.
,
40
(
11–12
), pp.
6105
6120
.10.1016/j.apm.2016.01.050
22.
Roy
,
A.
, and
Chakraborty
,
S.
,
2023
, “
Support Vector Machine in Structural Reliability Analysis: A Review
,”
Reliab. Eng. Syst. Saf.
,
233
, p.
109126
.10.1016/j.ress.2023.109126
23.
Zhou
,
Y.
,
Lu
,
Z.
,
Cheng
,
K.
, and
Ling
,
C.
,
2019
, “
An Efficient and Robust Adaptive Sampling Method for Polynomial Chaos Expansion in Sparse Bayesian Learning Framework
,”
Comput. Methods Appl. Mech. Eng.
,
352
, pp.
654
674
.10.1016/j.cma.2019.04.046
24.
Kröker
,
I.
, and
Oladyshkin
,
S.
,
2022
, “
Arbitrary Multi-Resolution Multi-Wavelet-Based Polynomial Chaos Expansion for Data-Driven Uncertainty Quantification
,”
Reliab. Eng. Syst. Saf.
,
222
, p.
108376
.10.1016/j.ress.2022.108376
25.
Li
,
X.
,
Gong
,
C.
,
Gu
,
L.
,
Gao
,
W.
,
Jing
,
Z.
, and
Su
,
H.
,
2018
, “
A Sequential Surrogate Method for Reliability Analysis Based on Radial Basis Function
,”
Struct. Saf.
,
73
, pp.
42
53
.10.1016/j.strusafe.2018.02.005
26.
Jing
,
Z.
,
Chen
,
J.
, and
Li
,
X.
,
2019
, “
RBF-GA: An Adaptive Radial Basis Function Metamodeling With Genetic Algorithm for Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
189
, pp.
42
57
.10.1016/j.ress.2019.03.005
27.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.10.1016/j.strusafe.2011.01.002
28.
Li
,
M.
, and
Wang
,
Z.
,
2021
, “
An LSTM-Based Ensemble Learning Approach for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031702
.10.1115/1.4048625
29.
Wang
,
D.
,
Zhang
,
D.
,
Meng
,
Y.
,
Yang
,
M.
,
Meng
,
C.
,
Han
,
X.
, and
Li
,
Q.
,
2023
, “
AK-HRn: An Efficient Adaptive Kriging-Based n-Hypersphere Rings Method for Structural Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
414
, p.
116146
.10.1016/j.cma.2023.116146
30.
Xiao
,
T.
,
Park
,
C.
,
Lin
,
C.
,
Ouyang
,
L.
, and
Ma
,
Y.
,
2023
, “
Hybrid Reliability Analysis With Incomplete Interval Data Based on Adaptive Kriging
,”
Reliab. Eng. Syst. Saf.
,
237
, p.
109362
.10.1016/j.ress.2023.109362
31.
Wu
,
H.
,
Zhu
,
Z.
, and
Du
,
X.
,
2020
, “
System Reliability Analysis With Autocorrelated Kriging Predictions
,”
ASME J. Mech. Des.
,
142
(
10
), p.
101702
.10.1115/1.4046648
32.
Xu
,
Y.
,
Wu
,
H.
,
Liu
,
Z.
,
Wang
,
P.
, and
Li
,
Y.
,
2024
, “
Multi-Task Learning for Design Under Uncertainty With Multi-Fidelity Partially Observed Information
,”
ASME J. Mech. Des.
,
146
(
8
), p.
081704
.10.1115/1.4064492
33.
Shi
,
M. L.
,
Lv
,
L.
, and
Xu
,
L.
,
2023
, “
A Multi-Fidelity Surrogate Model Based on Extreme Support Vector Regression: Fusing Different Fidelity Data for Engineering Design
,”
Eng. Comput.
,
40
(
2
), pp.
473
493
.10.1108/EC-10-2021-0583
34.
Huang
,
X.
,
Xie
,
T.
,
Luo
,
S.
,
Wu
,
J.
,
Luo
,
R.
, and
Zhou
,
Q.
,
2024
, “
Incremental Learning With Multi-Fidelity Information Fusion for Digital Twin-Driven Bearing Fault Diagnosis
,”
Eng. Appl. Artif. Intell.
,
133
, p.
108212
.10.1016/j.engappai.2024.108212
35.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
, 134(10), p.
100908
.10.1115/1.4007390
36.
Song
,
X.
,
Lv
,
L.
,
Sun
,
W.
, and
Zhang
,
J.
,
2019
, “
A Radial Basis Function-Based Multi-Fidelity Surrogate Model: Exploring Correlation Between High-Fidelity and Low-Fidelity Models
,”
Struct. Multidiscip. Optim.
,
60
(
3
), pp.
965
981
.10.1007/s00158-019-02248-0
37.
Shu
,
L.
,
Jiang
,
P.
,
Song
,
X.
, and
Zhou
,
Q.
,
2019
, “
Novel Approach for Selecting Low-Fidelity Scale Factor in Multifidelity Metamodeling
,”
AIAA J.
,
57
(
12
), pp.
5320
5330
.10.2514/1.J057989
38.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.10.1093/biomet/87.1.1
39.
Park
,
C.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2018
, “
Low-Fidelity Scale Factor Improves Bayesian Multi-Fidelity Prediction by Reducing Bumpiness of Discrepancy Function
,”
Struct. Multidiscip. Optim.
,
58
(
2
), pp.
399
414
.10.1007/s00158-018-2031-2
40.
Zhou
,
Q.
,
Wu
,
Y.
,
Guo
,
Z.
,
Hu
,
J.
, and
Jin
,
P.
,
2020
, “
A Generalized Hierarchical Co-Kriging Model for Multi-Fidelity Data Fusion
,”
Struct. Multidiscip. Optim.
,
62
(
4
), pp.
1885
1904
.10.1007/s00158-020-02583-7
41.
Chakraborty
,
S.
,
2021
, “
Transfer Learning Based Multi-Fidelity Physics Informed Deep Neural Network
,”
J. Comput. Phys.
,
426
, p.
109942
.10.1016/j.jcp.2020.109942
42.
Guo
,
M.
,
Manzoni
,
A.
,
Amendt
,
M.
,
Conti
,
P.
, and
Hesthaven
,
J. S.
,
2022
, “
Multi-Fidelity Regression Using Artificial Neural Networks: Efficient Approximation of Parameter-Dependent Output Quantities
,”
Comput. Methods Appl. Mech. Eng.
,
389
, p.
114378
.10.1016/j.cma.2021.114378
43.
Huang
,
X.
,
Xie
,
T.
,
Wang
,
Z.
,
Chen
,
L.
,
Zhou
,
Q.
, and
Hu
,
Z.
,
2022
, “
A Transfer Learning-Based Multi-Fidelity Point-Cloud Neural Network Approach for Melt Pool Modeling in Additive Manufacturing
,”
ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
8
(
1
), p.
011104
.10.1115/1.4051749
44.
Wu
,
J.
,
Feng
,
X.
,
Cai
,
X.
,
Huang
,
X.
, and
Zhou
,
Q.
,
2023
, “
A Deep Learning-Based Multi-Fidelity Optimization Method for the Design of Acoustic Metasurface
,”
Eng. Comput.
,
39
(
5
), pp.
3421
3439
.10.1007/s00366-022-01765-9
45.
Zeng
,
J.
,
Li
,
G.
,
Gao
,
Z.
,
Li
,
Y.
,
Sundararajan
,
S.
,
Barbat
,
S.
, and
Hu
,
Z.
,
2023
, “
Machine Learning Enabled Fusion of CAE Data and Test Data for Vehicle Crashworthiness Performance Evaluation by Analysis
,”
Struct. Multidiscip. Optim.
,
66
(
4
), p.
96
.10.1007/s00158-023-03553-5
46.
Meng
,
X.
, and
Karniadakis
,
G. E.
,
2020
, “
A Composite Neural Network That Learns From Multi-Fidelity Data: Application to Function Approximation and Inverse PDE Problems
,”
J. Comput. Phys.
,
401
, p.
109020
.10.1016/j.jcp.2019.109020
47.
Zhang
,
X.
,
Xie
,
F.
,
Ji
,
T.
,
Zhu
,
Z.
, and
Zheng
,
Y.
,
2021
, “
Multi-Fidelity Deep Neural Network Surrogate Model for Aerodynamic Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
373
, p.
113485
.10.1016/j.cma.2020.113485
48.
Zhang
,
Y.
,
Gong
,
Z.
,
Zhou
,
W.
,
Zhao
,
X.
,
Zheng
,
X.
, and
Yao
,
W.
,
2023
, “
Multi-Fidelity Surrogate Modeling for Temperature Field Prediction Using Deep Convolution Neural Network
,”
Eng. Appl. Artif. Intell.
,
123
, p.
106354
.10.1016/j.engappai.2023.106354
49.
Conti
,
P.
,
Guo
,
M.
,
Manzoni
,
A.
, and
Hesthaven
,
J. S.
,
2023
, “
Multi-Fidelity Surrogate Modeling Using Long Short-Term Memory Networks
,”
Comput. Methods Appl. Mech. Eng.
,
404
, p.
115811
.10.1016/j.cma.2022.115811
50.
Zhang
,
C.
,
Liu
,
L.
,
Wang
,
H.
,
Song
,
X.
, and
Tao
,
D.
,
2022
, “
SCGAN: Stacking-Based Generative Adversarial Networks for Multi-Fidelity Surrogate Modeling
,”
Struct. Multidiscip. Optim.
,
65
(
6
), p.
163
.10.1007/s00158-022-03255-4
51.
Li
,
M.
, and
Wang
,
Z.
,
2019
, “
Active Resource Allocation for Reliability Analysis With Model Bias Correction
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051403
.10.1115/1.4042344
52.
Wang
,
Z.
,
Fu
,
Y.
,
Yang
,
R. J.
,
Barbat
,
S.
, and
Chen
,
W.
,
2016
, “
Validating Dynamic Engineering Models Under Uncertainty
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111402
.10.1115/1.4034089
53.
Li
,
M.
, and
Wang
,
Z.
,
2020
, “
Reliability-Based Multifidelity Optimization Using Adaptive Hybrid Learning
,”
ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
6
(
2
), p.
021005
.10.1115/1.4044773
54.
Xing
,
Y.
,
Song
,
Q.
, and
Cheng
,
G.
,
2019
, “
Benefit of Interpolation in Nearest Neighbor Algorithms
,”
SIAM J. Math. Data.
, 4(2), pp.
935
956
.10.1137/21M1437457
55.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.10.1016/j.probengmech.2004.04.003
56.
Fernández
,
E.
,
Yang
,
K. K.
,
Koppen
,
S.
,
Alarcón
,
P.
,
Bauduin
,
S.
, and
Duysinx
,
P.
,
2020
, “
Imposing Minimum and Maximum Member Size, Minimum Cavity Size, and Minimum Separation Distance Between Solid Members in Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
368
, p.
113157
.10.1016/j.cma.2020.113157
57.
Eom
,
Y. S.
,
Yoo
,
K. S.
,
Park
,
J. Y.
, and
Han
,
S. Y.
,
2011
, “
Reliability-Based Topology Optimization Using a Standard Response Surface Method for Three-Dimensional Structures
,”
Struct. Multidiscip. Optim.
,
43
(
2
), pp.
287
295
.10.1007/s00158-010-0569-8
58.
Wu
,
Y.
,
Gao
,
Y.
,
Zhang
,
N.
, and
Zhang
,
F.
,
2018
, “
Simulation of Spatially Varying Non-Gaussian and Nonstationary Seismic Ground Motions by the Spectral Representation Method
,”
J. Eng. Mech.
,
144
(
1
), p.
04017143
.10.1061/(ASCE)EM.1943-7889.0001371
59.
Pedersen
,
C. B.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2001
, “
Topology Synthesis of Large‐Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2683
2705
.10.1002/nme.148
60.
Zhuang
,
Z.
,
Xie
,
Y. M.
, and
Zhou
,
S.
,
2021
, “
A Reaction Diffusion-Based Level Set Method Using Body-Fitted Mesh for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
381
, p.
113829
.10.1016/j.cma.2021.113829
You do not currently have access to this content.